Skip to main content
Orthopedics, 2013;36(4):e484–e488
Published Online:https://doi.org/10.3928/01477447-20130327-27Cited by:3

Abstract

Spine stabilization after C3–C7 laminectomy can be accomplished with many instrumentation options. A hybrid construct using lateral mass screws from C3 to C5 and pedicle screws at C7 can potentially maximize strength and solve the spatial constraints introduced by the placement of C6 lateral mass screws and C7 pedicle screws. Seven cadaveric cervical spines from C2 to T2 were potted in a custom testing apparatus. Differential variable reluctance transducers were placed on C6 and C7 to measure linear displacement. Specimens were loaded in flexion, extension, lateral bending, and axial torque at 1.5 Nm. A wide laminectomy was then performed, and specimens were randomized to first receive either the bilateral C3–C7 lateral mass screw construct or a hybrid construct with C3–C5 lateral mass screws and C7 pedicle screws. All specimens were tested with both constructs. Normalized deformation (mean±SD) for the lateral mass screw vs the hybrid pedicle screw constructs in the sagittal plane was 7.46%±5.48% vs 5.68%±3.67%, respectively (P=.237). Coronal deformation for lateral mass screw vs the hybrid pedicle screw constructs was 19.2%±10.9% vs 13.6%±9.53% (P=.237). Axial rotation deformation for lateral mass vs pedical screw constructs was 85.9%±83.3% vs 74.7%±58.1%, respectively (P=.868). Despite data reported in the literature indicating a higher pullout strength of pedicle screws and improved strength of hybrid pedicle screw constructs compared with lateral mass screw constructs, a hybrid construct taking spatial constraints and increased danger of pedicle screw placement above C7 into account showed no improvement in motion compared with a lateral mass screw construct.

  • 1.Phillips FM, Carlson G, Emery SE, Bohlman HH. Anterior cervical pseudarthrosis: natural history and treatment. Spine (Phila Pa 1976). 1997; 22(14):1585–158910.1097/00007632-199707150-00012.

    > Crossref MedlineGoogle Scholar
  • 2.Bolesta MJ, Rechtine GR, Chrin AM. Three- and four-level anterior cervical discectomy and fusion with plate fixation: a prospective study. Spine (Phila Pa 1976). 2000; 25(16):2040–204410.1097/00007632-200008150-00007.

    > Crossref MedlineGoogle Scholar
  • 3.Wang JC, McDonough PW, Kanim LE, Endow KK, Delamarter RB. Increased fusion rates with cervical plating for three-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2001; 26(6):643–64610.1097/00007632-200103150-00015.

    > Crossref MedlineGoogle Scholar
  • 4.Subramaniam V, Chamberlain RH, Theodore N, et al.Biomechanical effects of laminoplasty versus laminectomy: stenosis and stability. Spine (Phila Pa 1976). 2009; 34(16):E573–E57810.1097/BRS.0b013e3181aa0214.

    > Crossref MedlineGoogle Scholar
  • 5.Albert TJ, Vaccaro A. Postlaminectomy kyphosis. Spine (Phila Pa 1976). 1998; 23(24):2738–274510.1097/00007632-199812150-00014.

    > Crossref MedlineGoogle Scholar
  • 6.Kawaguchi Y, Kanamori M, Ishihara H, Ohmori K, Nakamura H, Kimura T. Minimum 10-year followup after en bloc cervical laminoplasty. Clin Orthop Relat Res. 2003; (411):129–13910.1097/01.blo.0000069889.31220.62.

    > Crossref MedlineGoogle Scholar
  • 7.Wada E, Suzuki S, Kanazawa A. Subtotal corpectomy versus laminoplasty for multilevel cervical spondylotic myelopathy: a long-term follow-up study over 10 years. Spine (Phila Pa 1976). 2001; 26(13):144310.1097/00007632-200107010-00011.

    > Crossref MedlineGoogle Scholar
  • 8.Hale JJ, Gurson KI, Spivak JM. Laminoplasty: a review of its role in compressive cervical myelopathy. Spine J. 2006; 6(6 suppl):289S–298S10.1016/j.spinee.2005.12.032.

    > Crossref MedlineGoogle Scholar
  • 9.Kwon BK, Vaccaro AR, Grauer JN, Beiner JM. The use of rigid internal fixation in the surgical management of cervical spondylosis. Neurosurgery. 2007; 60(1 supp1 1):S118–S12910.1227/01.NEU.0000249222.57709.59.

    > Crossref MedlineGoogle Scholar
  • 10.Muffoletto AJ, Yang J, Vadhva M, Hadjipavlou AG. Cervical stability with lateral mass plating: unicortical versus bicortical screw purchase. Spine (Phila Pa 1976). 2003; 28(8):778–78110.1097/01.BRS.0000058938.57588.78.

    > Crossref MedlineGoogle Scholar
  • 11.Jones EL, Heller JG, Silcox DH, Hutton WC. Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine (Phila Pa 1976). 1997; 22(9):977–98210.1097/00007632-199705010-00009.

    > Crossref MedlineGoogle Scholar
  • 12.Johnson TL, Karaikovic EE, Lautenschlager EP, Marcu D. Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J. 2000; 6(6):667–67210.1016/j.spinee.2006.03.019.

    > CrossrefGoogle Scholar
  • 13.Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ. Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques. Spine (Phila Pa 1976). 2000; 25(13):1655–166710.1097/00007632-200007010-00009.

    > Crossref MedlineGoogle Scholar
  • 14.Abumi K, Shono Y, Ito M, Taneichi H, Kotani Y, Kaneda K. Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine (Phila Pa 1976). 2000; 25(8):962–96910.1097/00007632-200004150-00011.

    > Crossref MedlineGoogle Scholar
  • 15.Karaikovic EE, Daubs MD, Madsen R, Gaines RW. Morphologic characteristics of human cervical pedicles. Spine (Phila Pa 1976). 1997; 22(5):493–50010.1097/00007632-199703010-00005.

    > Crossref MedlineGoogle Scholar
  • 16.Liu J, Napolitano JT, Ebraheim NA. Systematic review of cervical pedicle dimensions and projections. Spine (Phila Pa 1976). 2010; 35(24):E1373–E138010.1097/BRS.0b013e3181e92272.

    > Crossref MedlineGoogle Scholar
  • 17.Xu R, Ebraheim NA, Yeasting R, Wong F, Jackson WT. Anatomy of C7 lateral mass and projection of pedicle axis on its posterior aspect. J Spinal Disord. 1995; 8(2):116–12010.1097/00002517-199504000-00004.

    > Crossref MedlineGoogle Scholar
  • 18.Panjabi MM. Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine (Phila Pa 1976). 1988; 13(10):1129–113410.1097/00007632-198810000-00013.

    > Crossref MedlineGoogle Scholar
  • 19.Crawford NR, Brantley AG, Dickman CA, Koeneman EJ. An apparatus for applying pure nonconstraining moments to spine segments in vitro. Spine (Phila Pa 1976). 1995; 20(19):2097–210010.1097/00007632-199510000-00005.

    > Crossref MedlineGoogle Scholar
  • 20.Kothe R, Rüther W, Schneider E, Linke B. Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine (Phila Pa 1976). 2004; 29(17):1869–187510.1097/01.brs.0000137287.67388.0b.

    > Crossref MedlineGoogle Scholar
  • 21.Boskus H, Ames C, Chamberlain RH, et al.Biomechanical analysis of rigid stabilization techniques for three-column injury in the lower cervical spine. Spine (Phila Pa 1976). 2005; 30(8):915–92210.1097/01.brs.0000158949.37281.d7.

    > Crossref MedlineGoogle Scholar
  • 22.Papagelopoulos PJ, Currier BL, Neale PG, et al.Biomechanical evaluation of posterior screw fixation in cadaveric cervical spines. Clin Orthop Relat Res. 2003; (411):13–2410.1097/01.blo.0000068359.47147.bd.

    > Crossref MedlineGoogle Scholar
  • 23.Espinoza-Larios A, Ames CP, Chamberlain RH, Sonntag VK, Dickman CA, Crawford NR. Biomechanical comparison of two-level cervical locking posterior screw/rod and hook/rod techniques. Spine J. 2007; 7(2):194–20410.1016/j.spinee.2006.04.015.

    > Crossref MedlineGoogle Scholar
  • 24.Rhee JM, Kraiwattanapong C, Hutton WC. A comparison of pedicle and lateral mass screw construct stiffnesses at the cervicothoracic junction: a biomechanical study. Spine (Phila Pa 1976). 2005; 30(21):E636–E64010.1097/01.brs.0000184750.80067.a1.

    > Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×