Glucosamine and Chondroitin Sulfate: What Has Been Learned Since the Glucosamine/chondroitin Arthritis Intervention Trial
Abstract
Glucosamine and chondroitin sulfate, alone or in combination, are used worldwide by individuals suffering from osteoarthritis pain. They are by prescription in some countries but are available as over-the-counter dietary supplements in other countries, such as the United States. The inconclusive results of the National Institutes of Health–sponsored Glucosamine/chondroitin Arthritis Intervention Trial (GAIT) did little to clarify the efficacy of these agents. However, some newer studies have provided a better perspective on the potential benefits that they can offer. Because the 2 in combination showed a significant level of efficacy in the moderate-to-severe knee osteoarthritis subgroup of the GAIT, this review examines the randomized, controlled trials published from that time to the present. The findings of these studies are mixed, owing in some cases to the high rate of placebo response added to by the ethical incorporation of rescue analgesics into protocols designed to evaluate the slow-acting, subtle effects of glucosamine and chondroitin sulfate in combination. The strong influence of the placebo effect and confounding of results by rescue analgesics point to the importance of objective measurement tools such as osteoarthritis biomarker panels in long-term glucosamine/chondroitin sulfate clinical trials with less reliance on the subjective measurement tools commonly used in osteoarthritis trials of pharmaceuticals. [Orthopedics. 2018; 41(4):200–207.]
- 1.Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology and burden of osteoarthritis. Br Med Bull. 2013; 105(1):185–199.
10.1093/bmb/lds038 > Crossref MedlineGoogle Scholar - 2.Bitton R, The economic burden of osteoarthritis. Am J Manag Care. 2009; 15(8) (suppl):S230–S235. > MedlineGoogle Scholar
- 3.Amoako AO, Pujalte GG. Osteoarthritis in young, active, and athletic individuals. Clin Med Insights Arthritis Musculoskelet Disord. 2014; 7:27–32.
10.4137/CMAMD.S14386 > Crossref MedlineGoogle Scholar - 4.Hootman JM, Helmick CG, Barbour KE, Theis KA, Boring MA. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015–2040. Arthritis Rheumatol. 2016; 68(7):1582–1587.
10.1002/art.39692 > Crossref MedlineGoogle Scholar - 5.Hootman JM, Helmick CG. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum. 2006; 54(1):226–229.
10.1002/art.21562 > Crossref MedlineGoogle Scholar - 6.Whittaker JL, Woodhouse LJ, Nettel-Aguirre A, Emery CA. Outcomes associated with early post-traumatic osteoarthritis and other negative health consequences 3–10 years following knee joint injury in youth sport. Osteoarthritis Cartilage. 2015; 23(7):1122–1129.
10.1016/j.joca.2015.02.021 > Crossref MedlineGoogle Scholar - 7.Antony B, Jones G, Venn A, Association between childhood overweight measures and adulthood knee pain, stiffness and dysfunction: a 25-year cohort study. Ann Rheum Dis. 2015; 74(4):711–717.
10.1136/annrheumdis-2013-204161 > Crossref MedlineGoogle Scholar - 8.Sabharwal S, Root MZ. Impact of obesity on orthopaedics. J Bone Joint Surg Am. 2012; 94(11):1045–1052.
10.2106/JBJS.K.00330 > Crossref MedlineGoogle Scholar - 9.Larson AM, Polson J, Fontana RJ, Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology. 2005; 42(6):1364–1372.
10.1002/hep.20948 > Crossref MedlineGoogle Scholar - 10.Bacchi S, Palumbo P, Sponta A, Coppolino MF. Clinical pharmacology of non-steroidal anti-inflammatory drugs: a review. Antiinflamm Antiallergy Agents Med Chem.2012; 11(1):52–64.
10.2174/187152312803476255 > Crossref MedlineGoogle Scholar - 11.Lanas A. A review of the gastrointestinal safety data: a gastroenterologist's perspective. Rheumatology (Oxford). 2010; 49(suppl 2):ii3–ii10.
10.1093/rheumatology/keq058 > Crossref MedlineGoogle Scholar - 12.Schmeltzer PA, Kosinski AS, Kleiner DE, Liver injury from nonsteroidal anti-inflammatory drugs in the United States. Liver Int. 2016; 36(4):603–609.
10.1111/liv.13032 > Crossref MedlineGoogle Scholar - 13.Chang YK, Liu JS, Hsu YH, Tarng DC, Hsu CC. Increased risk of end-stage renal disease (ESRD) requiring chronic dialysis is associated with use of nonsteroidal anti-inflammatory drugs (NSAIDs): nationwide case-crossover study. Medicine (Baltimore). 2015; 94(38):e1362.
10.1097/MD.0000000000001362 > Crossref MedlineGoogle Scholar - 14.Hsu CC, Wang H, Hsu YH, Use of nonsteroidal anti-inflammatory drugs and risk of chronic kidney disease in subjects with hypertension: nationwide longitudinal cohort study. Hypertension. 2015; 66(3):524–533.
10.1161/HYPERTENSIONAHA.114.05105 > Crossref MedlineGoogle Scholar - 15.Brook RD, Kramer MB, Blaxall BC, Bisognano JD. Nonsteroidal anti-inflammatory drugs and hypertension. J Clin Hypertens (Greenwich). 2000; 2(5):319–323. > MedlineGoogle Scholar
- 16.Aljadhey H, Tu W, Hansen RA, Blalock S, Brater DC, Murray MD. Comparative effects of non-steroidal anti-inflammatory drugs (NSAIDs) on blood pressure in patients with hypertension. BMC Cardiovasc Disord. 2012; 12:93.
10.1186/1471-2261-12-93 > Crossref MedlineGoogle Scholar - 17.Schjerning Olsen AM, Gislason GH, McGettigan P, Association of NSAID use with risk of bleeding and cardiovascular events in patients receiving antithrombotic therapy after myocardial infarction. JAMA. 2015; 313(8):805–814.
10.1001/jama.2015.0809 > Crossref MedlineGoogle Scholar - 18.Chuang SY, Yu Y, Sheu WH, Association of short-term use of nonsteroidal anti-inflammatory drugs with stroke in patients with hypertension. Stroke.2015; 46(4):996–1003.
10.1161/STROKEAHA.114.007932 > Crossref MedlineGoogle Scholar - 19.Stacy ZA, Dobesh PP, Trujillo TC. Cardiovascular risks of cyclooxygenase inhibition. Pharmacotherapy. 2006; 26(7):919–938.
10.1592/phco.26.7.919 > Crossref MedlineGoogle Scholar - 20.Laatikainen O, Sneck S, Bloigu R, Lahtinen M, Lauri T, Turpeinen M. Hospitalizations due to adverse drug events in the elderly: a retrospective register study. Front Pharmacol. 2016; 7:358.
10.3389/fphar.2016.00358 > Crossref MedlineGoogle Scholar - 21.Obreli Neto PR, Nobili A, de Lyra DP, Incidence and predictors of adverse drug reactions caused by drug-drug interactions in elderly outpatients: a prospective cohort study. J Pharm Pharm Sci. 2012; 15(2):332–343.
10.18433/J3CC86 > Crossref MedlineGoogle Scholar - 22.Lopes RD, Horowitz JD, Garcia DA, Crowther MA, Hylek EM. Warfarin and acetaminophen interaction: a summary of the evidence and biologic plausibility. Blood. 2011; 118(24):6269–6273.
10.1182/blood-2011-08-335612 > Crossref MedlineGoogle Scholar - 23.Parra D, Beckey NP, Stevens GR. The effect of acetaminophen on the international normalized ratio in patients stabilized on warfarin therapy. Pharmacotherapy. 2007; 27(5):675–683.
10.1592/phco.27.5.675 > Crossref MedlineGoogle Scholar - 24.Yu S, Garvin KL, Healy WL, Pellegrini VD, Iorio R. Preventing hospital readmissions and limiting the complications associated with total joint arthroplasty. J Am Acad Orthop Surg. 2015; 23(11):e60–e71.
10.5435/JAAOS-D-15-00044 > Crossref MedlineGoogle Scholar - 25.Moore RA, Derry S, McQuay HJ, Paling J. What do we know about communicating risk? A brief review and suggestion for contextualising serious, but rare, risk, and the example of cox-2 selective and non-selective NSAIDs. Arthritis Res Ther. 2008; 10(1):R20.
10.1186/ar2373 > Crossref MedlineGoogle Scholar - 26.Global Industry Analysts, Inc. Global bone and joint health supplements market to reach $9.09 billion by 2017, according to a new report by Global Industry Analysts, Inc. http://www.prweb.com/.../bone_supplements/joint_health_supplements/prweb8595554.htm. Accessed January 18, 2017. > Google Scholar
- 27.Sarma N, Giancaspro G, Venema J. Dietary supplements quality analysis tools from the United States Pharmacopeia. Drug Test Anal. 2016; 8(3–4):418–423.
10.1002/dta.1940 > Crossref MedlineGoogle Scholar - 28.Kleiner AC, Cladis DP, Santerre CR. A comparison of actual versus stated label amounts of EPA and DHA in commercial omega-3 dietary supplements in the United States. J Sci Food Agric. 2015; 95(6):1260–1267.
10.1002/jsfa.6816 > Crossref MedlineGoogle Scholar - 29.Weiguo Z, Giancaspro G, Adams KM, Electrophoretic separation of alginic sodium diester and sodium hexametaphosphate in chondroitin sulfate that interfere with the cetylpyridinium chloride titration assay. J AOAC Int. 2014; 97(6):1503–1513.
10.5740/jaoacint.14-167 > Crossref MedlineGoogle Scholar - 30.Russell AS, Aghazadeh-Habashi A, Jamali F. Active ingredient consistency of commercially available glucosamine sulfate products. J Rheumatol. 2002; 29(11):2407–2409. > MedlineGoogle Scholar
- 31.Adebowale AO, Cox DS, Liang Z, Eddington ND. Analysis of glucosamine and chondroitin sulfate content in marketed products and the Caco-2 permeability of chondroitin sulfate raw materials. J Am Nutrac Assoc.2000; 3(1):37–44. > Google Scholar
- 32.US Food & Drug Administration. Tips for dietary supplement users. http://www.fda.gov/Food/DietarySupplements/UsingDietarySupplements/ucm110567.htm. Accessed January 31, 2017. > Google Scholar
- 33.Glisson JK, Walker LA. How physicians should evaluate dietary supplements. Am J Med. 2010; 123(7):577–582.
10.1016/j.amjmed.2009.10.017 > Crossref MedlineGoogle Scholar - 34.DiNubile NA. Glucosamine and chondroitin sulfate in the management of osteoarthritis. Postgrad Med. 2009; 121(4):48–50.
10.3810/pgm.2009.07.2030 > Crossref MedlineGoogle Scholar - 35.Clegg DO, Reda DJ, Harris CL, Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med. 2006; 354(8):795–808.
10.1056/NEJMoa052771 > Crossref MedlineGoogle Scholar - 36.Hochberg MC, Martel-Pelletier J, Monfort J, Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib. Ann Rheum Dis. 2016; 75(1):37–44.
10.1136/annrheumdis-2014-206792 > Crossref MedlineGoogle Scholar - 37.Sawitzke AD, Shi H, Finco MF, Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT. Ann Rheum Dis. 2010; 69(8):1459–1464.
10.1136/ard.2009.120469 > Crossref MedlineGoogle Scholar - 38.Chan PS, Caron JP, Rosa GJ, Orth MW. Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E(2) in articular cartilage explants. Osteoarthritis Cartilage. 2005; 13(5):387–394.
10.1016/j.joca.2005.01.003 > Crossref MedlineGoogle Scholar - 39.Homandberg G, Guo D, Ray LM, Ding L. Mixtures of glucosamine and chondroitin sulfate reverse fibronectin fragment mediated damage to cartilage more effectively than either agent alone. Osteoarthritis Cartilage. 2006; 14(8):793–806.
10.1016/j.joca.2006.02.003 > Crossref MedlineGoogle Scholar - 40.Lippiello L, Woodward J, Karpman R, Hammad TA. In vivo chondroprotection and metabolic synergy of glucosamine and chondroitin sulfate. Clin Orthop Relat Res. 2000; 381:229–240.
10.1097/00003086-200012000-00027 > CrossrefGoogle Scholar - 41.Sawitzke AD, Shi H, Finco MF, The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial. Arthritis Rheum. 2008; 58(10):3183–3191.
10.1002/art.23973 > Crossref MedlineGoogle Scholar - 42.Sawitzke AD, Shi H, Finco MF, Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT. Ann Rheum Dis. 2010; 69(8):1459–1464.
10.1136/ard.2009.120469 > Crossref MedlineGoogle Scholar - 43.Fransen M, Agaliotis M, Nairn L, Glucosamine and chondroitin for knee osteoarthritis: a double-blind randomised placebo-controlled clinical trial evaluating single and combination regimens. Ann Rheum Dis. 2015; 74(5):851–858.
10.1136/annrheumdis-2013-203954 > Crossref MedlineGoogle Scholar - 44.Barnhill JG, Fye CL, Reda DJ, Harris CL, Clegg DO. Is all glucosamine alike? Clarifying the controversies for product selection and clinical research. J Complement Integr Med. 2009; 6(1). https://doi.org/10.2202/1553-3840.1134. Accessed February 7, 2017.
10.2202/1553-3840.1134 > CrossrefGoogle Scholar - 45.Institute of Medicine. Sulfate. In: , ed. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate.Washington, DC: The National Academies Press; 2005:424–448. > Google Scholar
- 46.Aghazadeh-Habashi A, Jamali F. The glucosamine controversy: a pharmacokinetic issue. J Pharm Pharm Sci. 2011; 14(2):264–273.
10.18433/J3XG6F > Crossref MedlineGoogle Scholar - 47.Provenza JR, Shinjo SK, Silva JM, Peron CR, Rocha FA. Combined glucosamine and chondroitin sulfate, once or three times daily, provides clinically relevant analgesia in knee osteoarthritis. Clin Rheumatol. 2015; 34(8):1455–1462.
10.1007/s10067-014-2757-1 > Crossref MedlineGoogle Scholar - 48.Roman-Blas JA, Castañeda S, Sánchez-Pernaute O, Largo R, Herrero-Beaumont GCS/GS Combined Therapy Study Group. Combined treatment with chondroitin sulfate and glucosamine sulfate shows no superiority over placebo for reduction of joint pain and functional impairment in patients with knee osteoarthritis: a six-month multicenter, randomized, double-blind, placebo-controlled clinical trial. Arthritis Rheum. 2016; 69(1):77–85.
10.1002/art.39819 > CrossrefGoogle Scholar - 49.Rafi MM, Yadav PN, Rossi AO. Glucosamine inhibits LPS-induced COX-2 and iNOS expression in mouse macrophage cells (RAW 264.7) by inhibition of p38-MAP kinase and transcription factor NF-kappaB. Mol Nutr Food Res. 2007; 51(5):587–593.
10.1002/mnfr.200600226 > Crossref MedlineGoogle Scholar - 50.Chou WY, Chuang KH, Sun D, Inhibition of PKC-induced COX-2 and IL-8 expression in human breast cancer cells by glucosamine. J Cell Physiol. 2015; 230(9):2240–2251.
10.1002/jcp.24955 > Crossref MedlineGoogle Scholar - 51.Andrés RM, Payá M, Montesinos MC, Potential antipsoriatic effect of chondroitin sulfate through inhibition of NF-kB and STAT3 in human keratinocytes. Pharmacol Res. 2013; 70(1):20–26.
10.1016/j.phrs.2012.12.004 > Crossref MedlineGoogle Scholar - 52.Vallières M, duSouich P. Modulation of inflammation by chondroitin sulfate. Osteoarthritis Cartilage. 2010; 18(suppl 1):S1–S6.
10.1016/j.joca.2010.02.017 > Crossref MedlineGoogle Scholar - 53.Liacini A, Sylvester J, Li WQ, Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp Cell Res. 2003; 288(1):208–217.
10.1016/S0014-4827(03)00180-0 > Crossref MedlineGoogle Scholar - 54.Rose BJ, Kooyman DL. A tale of two joints: the role of matrix metalloproteases in cartilage biology. Dis Markers. 2016; 2016:4895050.
10.1155/2016/4895050 > Crossref MedlineGoogle Scholar - 55.Oeckinghaus A, Ghosh S. The NF-kB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009; 1(4):a000034.
10.1101/cshperspect.a000034 > Crossref MedlineGoogle Scholar - 56.Navarro SL, White E, Kantor ED, Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PLoS One. 2015; 10(2):e0117534.
10.1371/journal.pone.0117534 > Crossref MedlineGoogle Scholar - 57.Calamia V, Mateos J, Fernández-Puente P, A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine. Sci Rep. 2014; 4:5069.
10.1038/srep05069 > Crossref MedlineGoogle Scholar - 58.Terencio MC, Ferrándiz ML, Carceller MC, Chondroprotective effects of the combination chondroitin sulfate-glucosamine in a model of osteoarthritis induced by anterior cruciate ligament transection in ovariectomised rats. Biomed Pharmacother. 2016; 79:120–128.
10.1016/j.biopha.2016.02.005 > Crossref MedlineGoogle Scholar - 59.Calabró P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation. 2003; 108(16):1930–1932.
10.1161/01.CIR.0000096055.62724.C5 > Crossref MedlineGoogle Scholar - 60.Spector TD, Hart DJ, Nandra DV, Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum. 1997; 40(4):723–727.
10.1002/art.1780400419 > Crossref MedlineGoogle Scholar - 61.Brown GA. AAOS clinical practice guideline: treatment of osteoarthritis of the knee. Evidence-based guideline, 2nd edition. J Am Acad Orthop Surg. 2013; 21(9):577–579. > MedlineGoogle Scholar