Skip to main content
Published Online:https://doi.org/10.3928/01477447-20190225-02Cited by:13

Abstract

Individuals with osteoarthritis have a diminished quality of life, and the condition is a major cause of disability. Newer biologic treatments have been developed that are believed to modify disease progression. These predominantly include hyaluronic acid, platelet-rich plasma, bone marrow aspirate concentrate, and adipose-derived mesenchymal stem cells. There is conflicting evidence regarding the use of orthobiologics for osteoarthritis and for focal chondral defects, although most studies indicate that injections of biologics are safe and without significant adverse effects. [Orthopedics. 2019; 42(2):66–73.]

  • 1.Centers for Disease Control and Prevention. Osteoarthritis (OA). http://www.cdc.gov/arthritis/basics/osteoarthritis.htm. Accessed October 9, 2018.

    Google Scholar
  • 2.Furner SE, Hootman JM, Helmick CG, Bolen J, Zack MM. Health-related quality of life of US adults with arthritis: analysis of data from the behavioral risk factor surveillance system, 2003, 2005, and 2007. Arthritis Care Res (Hoboken).2011; 63(6):788–799.10.1002/acr.20430

    Crossref MedlineGoogle Scholar
  • 3.Centers for Disease Control and Prevention. National and state medical expenditures and lost earnings attributable to arthritis and other rheumatic conditions—United States, 2003. MMWR Morb Mortal Wkly Rep. 2007; 56(1):4–7.

    MedlineGoogle Scholar
  • 4.Kon E, Filardo G, Drobnic M, et al.Non-surgical management of early knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2012; 20(3):436–449.10.1007/s00167-011-1713-8

    Crossref MedlineGoogle Scholar
  • 5.Watterson JR, Esdaile JM. Viscosupplementation: therapeutic mechanisms and clinical potential in osteoarthritis of the knee. J Am Acad Orthop Surg. 2000; 8(5):277–284.10.5435/00124635-200009000-00001

    Crossref MedlineGoogle Scholar
  • 6.Williams JM, Plaza V, Hui F, Wen C, Kuettner KE, Homandberg GA. Hyaluronic acid suppresses fibronectin fragment mediated cartilage chondrolysis: II. In vivo. Osteoarthritis Cartilage. 1997; 5(4):235–240.10.1016/S1063-4584(97)80019-2

    Crossref MedlineGoogle Scholar
  • 7.Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review. BMC Musculoskelet Disord. 2015; 16:321.10.1186/s12891-015-0775-z

    Crossref MedlineGoogle Scholar
  • 8.Euflexxa [package insert]. Parsippany, NJ: Ferring Pharmaceuticals Inc; 2016.

    Google Scholar
  • 9.Synvisc [package insert]. Ridgefield, NJ: Genzyme Corp; 2014.

    Google Scholar
  • 10.Synvisc-One [package insert]. Ridgefield, NJ: Genzyme Corp; 2014.

    Google Scholar
  • 11.Supartz [package insert]. Durham, NC: Bioventus LLC; 2015.

    Google Scholar
  • 12.Durolane [package insert]. Durham, NC: Bioventus LLC; 2015.

    Google Scholar
  • 13.Hyalgan [package insert]. Parsippany, NJ: Fidia Pharma USA Inc; 2014.

    Google Scholar
  • 14.Orthovisc [package insert]. Woburn, MA: Anika Therapeutics; 2005.

    Google Scholar
  • 15.Maharjan AS, Pilling D, Gomer RH. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. PLoS One. 2011; 6(10):e26078.10.1371/journal.pone.0026078

    Crossref MedlineGoogle Scholar
  • 16.Lee PB, Kim YC, Lim YJ, et al.Comparison between high and low molecular weight hyaluronates in knee osteoarthritis patients: open-label, randomized, multicentre clinical trial. J Int Med Res. 2006; 34(1):77–87.10.1177/147323000603400110

    Crossref MedlineGoogle Scholar
  • 17.Gigis I, Fotiadis E, Nenopoulos A, Tsitas K, Hatzokos I. Comparison of two different molecular weight intra-articular injections of hyaluronic acid for the treatment of knee osteoarthritis. Hippokratia. 2016; 20(1):26–31.

    MedlineGoogle Scholar
  • 18.Altman R, Hackel J, Niazi F, Shaw P, Nicholls M. Efficacy and safety of repeated courses of hyaluronic acid injections for knee osteoarthritis: a systematic review. Semin Arthritis Rheum. 2018; 48(2):168–175.10.1016/j.semarthrit.2018.01.009

    Crossref MedlineGoogle Scholar
  • 19.Jevsevar DS, Brown GA, Jones DL, et al.American Academy of Orthopaedic Surgeons. The American Academy of Orthopaedic Surgeons evidence-based guideline on: treatment of osteoarthritis of the knee, 2nd edition. J Bone Joint Surg Am. 2013; 95(20):1885–1886.10.2106/00004623-201310160-00010

    Crossref MedlineGoogle Scholar
  • 20.Carlson VR, Ong AC, Orozco FR, Hernandez VH, Lutz RW, Post ZD. Compliance with the AAOS guidelines for treatment of osteoarthritis of the knee: a survey of the American Association of Hip and Knee Surgeons. J Am Acad Orthop Surg. 2018; 26(3):103–107.10.5435/JAAOS-D-17-00164

    Crossref MedlineGoogle Scholar
  • 21.Campbell KA, Erickson BJ, Saltzman BM, et al.Is local viscosupplementation injection clinically superior to other therapies in the treatment of osteoarthritis of the knee: a systematic review of overlapping meta-analyses. Arthroscopy. 2015; 31(10):2036–2045.10.1016/j.arthro.2015.03.030

    Crossref MedlineGoogle Scholar
  • 22.Strauss EJ, Barker JU, Kercher JS, Cole BJ, Mithoefer K. Augmentation strategies following the microfracture technique for repair of focal chondral defects. Cartilage. 2010; 1(2):145–152.10.1177/1947603510366718

    Crossref MedlineGoogle Scholar
  • 23.Strauss E, Schachter A, Frenkel S, Rosen J. The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions. Am J Sports Med. 2009; 37(4):720–726.10.1177/0363546508328415

    Crossref MedlineGoogle Scholar
  • 24.Görmeli G, Karakaplan M, Görmeli CA, Sarikaya B, Elmali N, Ersoy Y. Clinical effects of platelet-rich plasma and hyaluronic acid as an additional therapy for talar osteochondral lesions treated with microfracture surgery: a prospective randomized clinical trial. Foot Ankle Int. 2015; 36(8):891–900.10.1177/1071100715578435

    Crossref MedlineGoogle Scholar
  • 25.Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016; 44(11):2846–2854.10.1177/0363546516656179

    Crossref MedlineGoogle Scholar
  • 26.Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2017; 25(8):2494–2501.10.1007/s00167-016-3984-6

    Crossref MedlineGoogle Scholar
  • 27.Sadlik B, Gobbi A, Puszkarz M, Klon W, Whyte GP. Biologic inlay osteochondral reconstruction: arthroscopic one-step osteochondral lesion repair in the knee using morselized bone grafting and hyaluronic acid-based scaffold embedded with bone marrow aspirate concentrate. Arthrosc Tech. 2017; 6(2):e383–e389.10.1016/j.eats.2016.10.023

    Crossref MedlineGoogle Scholar
  • 28.Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg. 2004; 114(6):1502–1508.10.1097/01.PRS.0000138251.07040.51

    Crossref MedlineGoogle Scholar
  • 29.Coppinger JA, Cagney G, Toomey S, et al.Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004; 103(6):2096–2104.10.1182/blood-2003-08-2804

    Crossref MedlineGoogle Scholar
  • 30.Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis Cartilage. 2006; 14(5):403–412.10.1016/j.joca.2005.10.011

    Crossref MedlineGoogle Scholar
  • 31.van Buul GM, Koevoet WL, Kops N, et al.Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med. 2011; 39(11):2362–2370.10.1177/0363546511419278

    Crossref MedlineGoogle Scholar
  • 32.Castillo TN, Pouliot MA, Kim HJ, Dragoo JL. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011; 39(2):266–271.10.1177/0363546510387517

    Crossref MedlineGoogle Scholar
  • 33.Amable PR, Carias RB, Teixeira MV, et al.Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther. 2013; 4(3):67.10.1186/scrt218

    Crossref MedlineGoogle Scholar
  • 34.Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2018; 26(1):333–342.10.1007/s00167-016-3981-9

    Crossref MedlineGoogle Scholar
  • 35.Zhou Y, Zhang J, Wu H, Hogan MV, Wang JH. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells: implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res Ther. 2015; 6:173.10.1186/s13287-015-0172-4

    Crossref MedlineGoogle Scholar
  • 36.McCarrel TM, Minas T, Fortier LA. Optimization of leukocyte concentration in platelet-rich plasma for the treatment of tendinopathy. J Bone Joint Surg Am. 2012; 94(19):e143(1–8).10.2106/JBJS.L.00019

    Crossref MedlineGoogle Scholar
  • 37.Riboh JC, Saltzman BM, Yanke AB, Fortier L, Cole BJ. Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am J Sports Med. 2016; 44(3):792–800.10.1177/0363546515580787

    Crossref MedlineGoogle Scholar
  • 38.Cole BJ, Karas V, Hussey K, Pilz K, Fortier LA. Hyaluronic acid versus platelet-rich plasma: a prospective, double-blind randomized controlled trial comparing clinical outcomes and effects on intra-articular biology for the treatment of knee osteoarthritis. Am J Sports Med. 2017; 45(2):339–346.10.1177/0363546516665809

    Crossref MedlineGoogle Scholar
  • 39.Dai WL, Zhou AG, Zhang H, Zhang J. Efficacy of platelet-rich plasma in the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials. Arthroscopy. 2017; 33(3):659–670.10.1016/j.arthro.2016.09.024

    Crossref MedlineGoogle Scholar
  • 40.Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 2011; 39(10):2135–2140.10.1177/0363546511417792

    Crossref MedlineGoogle Scholar
  • 41.Dernek B, Kesiktas FN, Duymus TM, et al.Effect of platelet concentration on clinical improvement in treatment of early stage knee osteoarthritis with platelet-rich plasma concentrations. J Phys Ther Sci. 2017; 29(5):896–901.10.1589/jpts.29.896

    Crossref MedlineGoogle Scholar
  • 42.Smith PA. Intra-articular autologous conditioned plasma injections provide safe and efficacious treatment for knee osteoarthritis: an FDA-sanctioned, randomized, double-blind, placebo-controlled clinical trial. Am J Sports Med. 2016; 44(4):884–891.10.1177/0363546515624678

    Crossref MedlineGoogle Scholar
  • 43.Forogh B, Mianehsaz E, Shoaee S, Ahadi T, Raissi GR, Sajadi S. Effect of single injection of platelet-rich plasma in comparison with corticosteroid on knee osteoarthritis: a double-blind randomized clinical trial. J Sports Med Phys Fitness. 2016; 56(7–8):901–908.

    MedlineGoogle Scholar
  • 44.Doganay Erdogan B, Leung YY, Pohl C, Tennant A, Conaghan PG. Minimal clinically important difference as applied in rheumatology: an OMERACT Rasch Working Group systematic review and critique. J Rheumatol. 2016; 43(1):194–202.10.3899/jrheum.141150

    Crossref MedlineGoogle Scholar
  • 45.Lee GW, Son JH, Kim JD, Jung GH. Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age?Eur J Orthop Surg Traumatol.2013; 23(5):581–587.10.1007/s00590-012-1038-4

    Crossref MedlineGoogle Scholar
  • 46.Papalia R, Diaz Balzani L, Torre G, et al.Intraoperative application platelet rich fibrin, postoperative injections of PRP or microfracture only for osteochondral lesions of the knee: a five-year retrospective evaluation. J Biol Regul Homeost Agents. 2016; 30(4)(suppl 1):41–49.

    MedlineGoogle Scholar
  • 47.Dombrowski ME, Yasui Y, Murawski CD, et al.International Consensus Group on Cartilage Repair of the Ankle. Conservative management and biological treatment strategies: proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int. 2018; 39(1)(suppl):9S–15S.10.1177/1071100718779390

    Crossref MedlineGoogle Scholar
  • 48.Dar A, Goichberg P, Shinder V, et al.Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005; 6(10):1038–1046.10.1038/ni1251

    Crossref MedlineGoogle Scholar
  • 49.Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991; 78(1):55–62.

    Crossref MedlineGoogle Scholar
  • 50.Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am. 2013; 95(14):1312–1316.10.2106/JBJS.L.01529

    Crossref MedlineGoogle Scholar
  • 51.Beitzel K, McCarthy MB, Cote MP, et al.Comparison of mesenchymal stem cells (osteoprogenitors) harvested from proximal humerus and distal femur during arthroscopic surgery. Arthroscopy. 2013; 29(2):301–308.10.1016/j.arthro.2012.08.021

    Crossref MedlineGoogle Scholar
  • 52.Henrich D, Nau C, Kraft SB, et al.Effect of the harvest procedure and tissue site on the osteogenic function of and gene expression in human mesenchymal stem cells. Int J Mol Med. 2016; 37(4):976–988.10.3892/ijmm.2016.2489

    Crossref MedlineGoogle Scholar
  • 53.Angel cPRP & Bone Marrow Processing System [package insert]. Naples, FL: Arthrex; 2018.

    Google Scholar
  • 54.BioCUE Platelet Concentration System [package insert]. Warsaw, IN: Biomet Orthopedics; 2011.

    Google Scholar
  • 55.Magellan Autologous Platelet Separator System including associated disposables [operator's manual]. Hopkinton, MA: Arteriocyte Medical Systems, Inc; 2018.

    Google Scholar
  • 56.ART BMC [package insert]. Austin, TX: Celling Biosciences; 2014.

    Google Scholar
  • 57.Biologics Preparation Technique [product manual]. Gainesville, FL: Exactech Biologics; 2012.

    Google Scholar
  • 58.Gaul F, Bugbee WD, Hoenecke HR, D'Lima DD. A review of commercially available point-of-care devices to concentrate bone marrow for the treatment of osteoarthritis and focal cartilage lesions [published online ahead of print April 1, 2018]. Cartilage.10.1177/1947603518768080

    CrossrefGoogle Scholar
  • 59.Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sports Med. 2016; 4(1):2325967115625481.

    CrossrefGoogle Scholar
  • 60.Kim JD, Lee GW, Jung GH, et al.Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur J Orthop Surg Traumatol. 2014; 24(8):1505–1511.10.1007/s00590-013-1393-9

    Crossref MedlineGoogle Scholar
  • 61.Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O'Connor MI. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med. 2017; 45(1):82–90.10.1177/0363546516662455

    Crossref MedlineGoogle Scholar
  • 62.Hannon CP, Ross KA, Murawski CD, et al.Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy. 2016; 32(2):339–347.10.1016/j.arthro.2015.07.012

    Crossref MedlineGoogle Scholar
  • 63.Perdisa F, Gostynska N, Roffi A, Filardo G, Marcacci M, Kon E. Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem Cells Int. 2015; 2015:597652.10.1155/2015/597652

    Crossref MedlineGoogle Scholar
  • 64.Zuk PA, Zhu M, Ashjian P, et al.Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002; 13(12):4279–4295.10.1091/mbc.e02-02-0105

    Crossref MedlineGoogle Scholar
  • 65.Coughlin RP, Oldweiler A, Mickelson DT, Moorman CT. Adipose-derived stem cell transplant technique for degenerative joint disease. Arthrosc Tech. 2017; 6(5):e1761–e1766.10.1016/j.eats.2017.06.048

    Crossref MedlineGoogle Scholar
  • 66.Dragoo JL, Chang W. Arthroscopic harvest of adipose-derived mesenchymal stem cells from the infrapatellar fat pad. Am J Sports Med. 2017; 45(13):3119–3127.10.1177/0363546517719454

    Crossref MedlineGoogle Scholar
  • 67.Pers YM, Rackwitz L, Ferreira R, et al.Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016; 5(7):847–856.10.5966/sctm.2015-0245

    Crossref MedlineGoogle Scholar
  • 68.Russo A, Screpis D, Di Donato SL, Bonetti S, Piovan G, Zorzi C. Autologous microfragmented adipose tissue for the treatment of diffuse degenerative knee osteoarthritis: an update at 3 year follow-up. J Exp Orthop. 2018; 5(1):52.10.1186/s40634-018-0169-x

    Crossref MedlineGoogle Scholar
  • 69.Hurley ET, Yasui Y, Gianakos AL, et al.Limited evidence for adipose-derived stem cell therapy on the treatment of osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2018; 26(11):3499–3507.10.1007/s00167-018-4955-x

    Crossref MedlineGoogle Scholar
  • 70.Koh YG, Kwon OR, Kim YS, Choi YJ, Tak DH. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy. 2016; 32(1):97–109.10.1016/j.arthro.2015.09.010

    Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×