Skip to main content
Published Online:https://doi.org/10.3928/0191-3913-19940101-04

Abstract

ABSTRACT

We have examined the effects of preoperative, full-time alternate occlusion on the development of visual motion processing mechanisms. Motion visual evoked potentials (MVEPs) were recorded longitudinally in 14 infantile esotropia patients during the course of standard preoperative occlusion therapy. The MVEP in these patients was initially asymmetric in a fashion consistent with a nasalward/temporalward response bias, with a motion asymmetry significantly higher than that of agematched normals. The magnitude of the developmental motion asymmetry declined significantly after an average of 24 weeks of alternate occlusion. This result implies that the binocular motion-sensitive cells underlying the MVEP retain some degree of plasticity up to at least 1 year of age. Our data suggest further that the persistence of motion asymmetries in untreated infantile esotropia patients is maintained by an active process that can be disrupted by alternate occlusion. Alternate occlusion apparently eliminates a form of abnormal binocular interaction that supports the persistence of the motion asymmetry. We propose that one of the necessary pre-conditions for symmetricization of motion processing in infantile esotropia is the absence of abnormal competitive binocular interactions.

  • 1. Jampolsky A. The physician and the crossed-eyed child. A medical forum. Modern Medicine. 1953;21:144-154.

    Google Scholar
  • 2. Jampolsky A. Unequal visual inputs and strabismus management. In: Strabismus Symposium, Transactions of New Orleans Academy of Ophthalmology. St Louis, Mo: CV Mosby; 1978:358-592.

    Google Scholar
  • 3. Foster RS, Paul TO, Jampolsky A. Management of infantile esotropia. Am J Ophthalmol. 1976;82:291-299.

    Google Scholar
  • 4. Norcia AM, Garcia H, Humphry R, Holmes A, Hamer RD, Orel-Bixler D. Anomalous motion VEPs in infants and infantile esotropia. Invest Ophthalmol Vis Sci. 1991;32:436-439.

    Google Scholar
  • 5. Norcia AM, Hamer RD, Orel-Bixler D. Temporal tuning of the motion VEP in infants. Invest Ophthalmol Vis Sci. 1990;31<suppl):10.

    Google Scholar
  • 6. Ciancia AO. La Esotropia Con Limitación Bilateral de la-Abduccion en el Laçante. Archivos de Oftalmologia de Buenos Aires. 1962;36: 207-211.

    Google Scholar
  • 7. Ciancia AO. Influencia de la oclusión de un ojo sobre los movimientos oculares en la esotropia con limitación las rio dio bilateral de la abducción. In: Souza-Dias C, ed. Anais de V Congresso do Conselho Latino-Americano de Estrabismo. Guarujah, Brasil: Consejo Latino Americano de Estrabismo;1976:37-43.

    Google Scholar
  • 8. Melek NB, Garcia H, Ciancia AO. La EOG de Seguimiento de Persecución en las Esotropias con Limitación Bilateral de Abducción. Archives de Oftalmologia de Buenos Aires. 1979;54:271-278.

    Google Scholar
  • 9. Schor CM, Levi DM. Disturbances of small-field horizontal and vertical optokinetic nystagmus in amblyopia. Invest Ophthalmol Vis Sci. 1980;19:668-683.

    Google Scholar
  • 10. Tychsen LR, Hertig R, Scott WE. Pursuit is impaired but the vestibuloocular reflex is normal in infantile esotropia. Arch Ophthalmol. 1985;103:536-539.

    Google Scholar
  • 11. Tychsen LR, Lisberger SG. Maldevelopment of visual motion processing in humans who had strabismus with onset in infancy. J Neurosci. 1986;6:2495-2508.

    Google Scholar
  • 12. Atkinson J. Development of optokinetic nystagmus in the human infant and monkey infant. In: Freeman RD, ed. Development Neurobiology of Vision. New York, NY: Plenum; 1979:277-287.

    Google Scholar
  • 13. Naegele JR, Held R. The postnatal development of monocular optokinetic nystagmus in infants. Vision Res. 1982;22:341-347.

    Google Scholar
  • 14. Mohn G. The development of binocular and monocular optokinetic nystagmus in human infants. Invest Ophthalmol Vis Sci. 1989;30(suppl):49.

    Google Scholar
  • 15. Lewis TL, Maurer D, van Schaik CS. Monocular OKN acuity is asymmetrical in normal 3-month olds. Invest Ophthalmol Vis Sci. 1989;3(Ksuppl):49.

    Google Scholar
  • 16. Norcia AM, Tyler CW1 Clarke M. Digital filtering and robust regression techniques for estimating sensory thresholds from the evoked potential. IEEE Eng Med Biol. 1985;22:26-32.

    Google Scholar
  • 17. Norcia AM, Jampolsky A, Hamer RD, Orel-Bixler D. Plasticity of human motion processing following strabismus surgery. Invest Ophthalmol Vis Sci. 1991;32(suppl):1044.

    Google Scholar
  • 18. Maurer D, Lewis T. Visual outcomes in infant cataracts. In: Simons K, ed. Infant Vision: Basic and Clinical Research. New York, NY: Oxford University Press. In press.

    Google Scholar
  • 19. Reed MJ, Steinbach MJ, Anstis SM, Gallie B, Smith D, Kraft S. The development of optokinetic nystagmus in strabismic and monocularly enucleated subjects. Behau Brain Res. 1991;46:31-42.

    Google Scholar
  • 20. Ing MR. Early surgical alignment for congenital esotropia. Transactions of the American Ophthalmological Society. 1981;LXXDC:625-652.

    Google Scholar
  • 21. Ing MR. Early Surgical Alignment for Congenital Esotropia. San Francisco, Calif: American Academy of Ophthalmology; 1983;90: 132-135.

    Google Scholar
  • 22. Movshon JA, Van Sluyters RC. Visual neural development. Annual Review of Psychology. 1981;32:477-522.

    Google Scholar
  • 23. Sherman SM, Spear PD. Organization of visual pathways in normal and visually deprived cats. Physiol Rev. 1982;62:738-855.

    Google Scholar
  • 24. Fregnac Y, Imbert M. Development of neuronal selectivity in primary visual cortex of cat. Physiol Reu 1984;64:325-434.

    Google Scholar
  • 25. Hirsch VB, Tieman DG, Tieman SB, Tumosa N. Unequal alternating exposure: effects during and after the classical critical period. In: Rauschecker JP, Marler P, eds. Imprinting and Cortical Plasticity. New York, NY: John Wiley; 1987:287-319.

    Google Scholar
  • 26. Mitchell DE. The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens. Philosophical Transactions of the Royal Society of London. Series B (Biological Sciences). 1991;333:51-79.

    Google Scholar
  • 27. Rauschecker JP. Mechanisms of visual plasticity: Hebb synapses, NMDA receptors and beyond. Physiol Rev. 1991;71:587-615.

    Google Scholar
  • 28. Blake RS, Hirsch HVB. Deficits in binocular depth perception in cats after alternating monocular deprivation. Science. 1975;190:1114-1116.

    Google Scholar
  • 29. Hubel DH, Wiesel TN. Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol. 1965;28:1041-1059.

    Google Scholar
  • 30. Crawford MLJ, von Noorden GK The effects of short-term experimental strabismus on the visual system in Macaca Mulatta. Invest Ophthalmol Vis Sci. 1979;18:496-505.

    Google Scholar
  • 31. Bennnett MJ, Smith EL III, Harwerth RS, Crawford MLJ. Ocular dominance, eye alignment, and visual acuity in kittens reared with an optically induced squint. Brain Res. 1980;193:33-45.

    Google Scholar
  • 32. Timney B, Mitchell DE, Cynader M. Behavioral evidence for prolonged sensitivity to effects of monocular deprivation in dark-reared cats. J Neurophysiol. 1980;43:1041-1054.

    Google Scholar
  • 33. Timney B, Mitchell DE, Giffin F. The development of vision in cats after extended periods of dark-rearing. Exp Brain Res. 1978;31: 547-560.

    Google Scholar
  • 34. Cynader M, Mitchell DE. Prolonged sensitivity to monocular deprivation in dark-reared cats. J Neurophysiol. 1980;43:1026-1040.

    Google Scholar
  • 35. Jampolsky A, Brown RJ, Boothe RG, et al. Delay of stereoacuity development in monkeys by full-time alternate occlusion. Invest Ophthalmol Vis Sci. 1993;34(suppl):1188.

    Google Scholar
  • 36. Wiesel TN, Hubel D. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol. 1963;26:1003-1017.

    Google Scholar
  • 37. Ohashi T, Norcia AM, Kasmatsu T, Jampolsky A. Cortical recovery from effects of monocular deprivation caused by diffusion and occlusion. Brain Res. 1991;548:73.

    Google Scholar
  • 38. Giffin F, Mitchell DE. The rate of recovery of vision after early monocular deprivation in kittens. J Physiol. 1978;274:511-537.

    Google Scholar
  • 39. Poggio GF, Fischer B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol. 1977;40:1392-1405.

    Google Scholar
  • 40. Hubel DH, Livingstone MS. Segregation of form, color, and stereopsis in primate area 18. J Neurosci. 1987;7:3378-3415.

    Google Scholar
  • 41. Ohzawa I, Freeman RD. The binocular organization of simple cells in the cat's visual cortex. J Neurophysiol. 1986;56:221-242.

    Google Scholar
  • 42. Ohzawa I, Freeman RD. The binocular organization of complex cells in the cat's visual cortex. J Neurophysiol. 1986;56:243-259.

    Google Scholar
  • 43. Harwerth RS, Smith EL, Duncan GC1 Crawford MLJ, von Noorden GK. Multiple sensitive periods in the development of the primate visual system. Science. 1986;232:235-238.

    Google Scholar
  • 44. Hallden U. Fusional phenomena in anomalous correspondence. Acta Ophthalmol. 1952;37(suppl):l.

    Google Scholar
  • 45. Jampolsky A. Characteristics of suppression in strabismus. Arch Ophthalmol. 1955;54:683-696.

    Google Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×
  • Published online1/1/94 12:00 AM
  • __article__history--ppub1/1/94 12:00 AM