Skip to main content
Journal of Pediatric Ophthalmology & Strabismus, 2017;55(1):14–22

Abstract

The potential role of sensory feedback from human extraocular muscles has been subjected to considerable speculation in the ophthalmic literature. Extraocular muscles pull against a fairly even load and do not initiate a stretch reflex, even when the eyes are directed toward the boundaries of their respective field of action. These unique working conditions and physiological properties have led to the notion that the sensory signal arising from receptors in extraocular muscles differs from the conventional proprioceptive signal arising from their somatic counterparts. The interest in the receptors at the myotendinous junction of human extraocular muscles has been renewed due to their alleged role in the development of binocular vision and their potential implication in the etiology of binocular vision anomalies. The idea that extraocular muscles provide knowledge of eye position and whether this function can be affected by surgical intervention has initiated several clinical and neuroanatomical studies. Many of these studies support this concept and suggest that surgical procedures that impose only minimal interference with the proprioceptive signal will give a better postoperative result. However, other studies contradict this view because the afferent capacity of the receptors can be questioned and some uncertainties remain. The purpose of this study was to review the related literature and discuss the possible role of ocular proprioceptors in relation to binocular vision and the development of eye motility disorders. [J Pediatr Ophthalmol Strabismus. 2018;55(1):14–22.]

  • 1.Marshall NJ, Land MF, Cronin TW. Shrimps that pay attention: saccadic eye movements in stomatopod crustaceans. Philos Trans R Soc Lond B Biol Sci. 2014; 369:20130042.10.1098/rstb.2013.0042

    > Crossref MedlineGoogle Scholar
  • 2.Zimmermann L, Morado-Díaz CJ, Davis-López de Carrizosa MA, et al.Axons giving rise to the palisade endings of feline extraocular muscles display motor features. J Neurosci. 2013; 33:2784–2793.10.1523/JNEUROSCI.4116-12.2013

    > Crossref MedlineGoogle Scholar
  • 3.Balslev D, Himmelbach M, Karnath HO, Borchers S, Odoj B. Eye proprioception used for visual localization only if in conflict with the oculomotor plan. J Neurosci. 2012, 32:8569–8573.10.1523/JNEUROSCI.1488-12.2012

    > Crossref MedlineGoogle Scholar
  • 4.Bridgeman B, Stark L. Ocular proprioception and efference copy in registering visual direction. Vision Res. 1991; 31:1903–1913.10.1016/0042-6989(91)90185-8

    > Crossref MedlineGoogle Scholar
  • 5.Gauthier GM, Nommay D, Vercher JL. The role of ocular muscle proprioception in visual localization of targets. Science. 1990: 249:58–61.10.1126/science.2367852

    > Crossref MedlineGoogle Scholar
  • 6.Weir C, Cleary M, Parks S, Dutton GN. Spatial localization in esotropia: does extraretinal eye position information change?Invest Ophthalmol Vis Sci. 2000; 41:3782–3786.

    > MedlineGoogle Scholar
  • 7.Steinbach MJ. Proprioceptive knowledge of eye position. Vision Res. 1987; 27:1737–1744.10.1016/0042-6989(87)90103-9

    > Crossref MedlineGoogle Scholar
  • 8.Sherrington CS. On the proprio-ceptive system, especially on its reflex aspect. Brain. 1907; 29:467–482.10.1093/brain/29.4.467

    > CrossrefGoogle Scholar
  • 9.Sherrington CS. Observations on the sensual role of the proprioceptive nerve-supply of the extrinsic ocular muscles. Brain. 1918; 41:332–343.10.1093/brain/41.3-4.332

    > CrossrefGoogle Scholar
  • 10.Donaldson IM. The functions of the proprioceptors of the eye muscles. Philos Trans R Soc Lond B Biol Sci. 2000; 355:1685–1754.10.1098/rstb.2000.0732

    > Crossref MedlineGoogle Scholar
  • 11.Ruskell GL. Extraocular muscle proprioceptors and proprioception. Prog Retin Eye Res. 1999; 18:269–291.10.1016/S1350-9462(98)00029-9

    > Crossref MedlineGoogle Scholar
  • 12.Weir CR. Proprioception in extraocular muscles. J Neuroophthalmol. 2006; 26:123–127.10.1097/01.wno.0000223272.86565.74

    > Crossref MedlineGoogle Scholar
  • 13.Weir CR. Spatial localisation: does extraocular muscle proprioception play a role?Graefes Arch Clin Exp Ophthalmol. 2000; 238:868–873.10.1007/s004170000166

    > Crossref MedlineGoogle Scholar
  • 14.Wade JN. Pioneers of eye movement research. Iperception. 2010; 1:33–68.

    > MedlineGoogle Scholar
  • 15.Steinbach MJ, Smith DR. Spatial localization after strabismus surgery: evidence for inflow. Science. 1981; 213:1407–1409.10.1126/science.7268444

    > Crossref MedlineGoogle Scholar
  • 16.Niechwiej-Szwedo E, González E, Bega S, Verrier MC, Wong AM, Steinbach MJ. Proprioceptive role for palisade endings in extraocular muscles: evidence from the Jendrassik Maneuver. Vision Res. 2006; 46:2268–2279.10.1016/j.visres.2005.12.006

    > Crossref MedlineGoogle Scholar
  • 17.Stark L, Bridgeman B. Role of corollary discharge in space constancy. Percept Psychophys. 1983; 34:371–380.10.3758/BF03203050

    > Crossref MedlineGoogle Scholar
  • 18.Gauthier GM, Vercher JL, Blouin J. Egocentric visual target position and velocity coding: role of ocular muscle proprioception. Ann Biomed Eng. 1995; 23:423–435.10.1007/BF02584442

    > Crossref MedlineGoogle Scholar
  • 19.Optican LM, Miles FA. Visually induced adaptive changes in primate saccadic oculomotor control signals. J Neurophysiol. 1985; 54:940–958.

    > Crossref MedlineGoogle Scholar
  • 20.Bruenech JR, Kjellevold Haugen IB. How does the structure of extraocular muscles and their nerves affect their function?Eye (Lond). 2015; 29:177–183.10.1038/eye.2014.269

    > Crossref MedlineGoogle Scholar
  • 21.Kim M, Sa HS, Park SE, Oh SY. The structural differences of proprioceptor in extraocular muscle between normal and strabismic eye. Invest Ophthalmol Vis Sci. 2005; 46:5725.

    > Google Scholar
  • 22.Lennerstrand G. Strabismus and sensory-motor function of eye muscles. J Integr Neurosci. 2005; 4:437–444.10.1142/S0219635205000896

    > Crossref MedlineGoogle Scholar
  • 23.Lennerstrand G. Strabismus and eye muscle function. Acta Ophthalmol Scand. 2007; 85:711–723.10.1111/j.1600-0420.2007.00853.x

    > Crossref MedlineGoogle Scholar
  • 24.Wasicky R, Horn AK, Büttner-Ennever JA. Twitch and non-twitch motoneuron subgroups in the oculomotor nucleus of monkeys receive different afferent projections. J Comp Neurol. 2004; 479:117–129.10.1002/cne.20296

    > Crossref MedlineGoogle Scholar
  • 25.Oh SY, Poukens V, Demer JL. Quantitative analysis of rectus extraocular muscle layers in monkey and humans. Invest Ophthalmol Vis Sci. 2001: 42:10–16.

    > MedlineGoogle Scholar
  • 26.Goldberg SJ, Lennerstrand G, Hull CD. Motor unit responses in the lateral rectus muscle of the cat: intracellular current injection of abducens nucleus neurons. Acta Physiol Scand. 1976: 96:58–63.10.1111/j.1748-1716.1976.tb10170.x

    > Crossref MedlineGoogle Scholar
  • 27.Goldberg SJ, Shall MS. Motor units of extraocular muscles: recent findings. Prog Brain Res. 1999; 123:221–232.10.1016/S0079-6123(08)62859-9

    > Crossref MedlineGoogle Scholar
  • 28.Spencer RF, Porter JD. Biological organization of the extraocular muscles. Prog Brain Res. 2006: 151:43–80.10.1016/S0079-6123(05)51002-1

    > Crossref MedlineGoogle Scholar
  • 29.Büttner-Ennever JA, Horn AK, Scherberger H, D'Ascanio P. Motoneurons of twitch and nontwitch extra ocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. J Comp Neurol. 2001; 438:318–335.10.1002/cne.1318

    > Crossref MedlineGoogle Scholar
  • 30.Chiarandini DJ, Stefani E. Electrophysiological identification of two types of fibres in rat extraocular muscles. J Physiol. 1979; 290:453–465.10.1113/jphysiol.1979.sp012783

    > Crossref MedlineGoogle Scholar
  • 31.Kjellgren D. Human Extraocular Muscles Molecular Diversity of a Unique Muscle Allotype [dissertation]. Umeå, Sweden: Umeå University; 2004.

    > Google Scholar
  • 32.Miller NR, Newman JN. Walsh and Hoyt's Clinical Neuro-Ophthalmology, vol 3. Philadelphia: Lippincott Williams & Wilkins; 2004:809–889.

    > Google Scholar
  • 33.Spencer RF, Porter JD. Structural organization of the extraocular muscles. Rev Oculomot Res. 1988; 2:33–79.

    > MedlineGoogle Scholar
  • 34.Bruenech R, Ruskell GL. Myotendinous nerve endings in human infant and adult extraocular muscles. Anat Rec. 2000; 260:132–140.10.1002/1097-0185(20001001)260:2<132::AID-AR30>3.0.CO;2-H

    > Crossref MedlineGoogle Scholar
  • 35.Haugen I-BK. Structural organisation of proprioceptors in the oculomotor system of mammals. Rapporter fra Høgskolen i Buskerud. 2002; 37:3–61.

    > Google Scholar
  • 36.Ruskell GL. The fine structure of human extraocular muscle spindles and their potential proprioceptive. J Anat. 1989; 167:199–214.

    > MedlineGoogle Scholar
  • 37.Bruenech JR, Ruskell GL. Muscle spindles in extraocular muscles of human infants. Cells Tissues Organs. 2001; 169:388–394.10.1159/000047906

    > Crossref MedlineGoogle Scholar
  • 38.Ruskell GL. The fine structure of innervated myotendinous cylinders of extraocular muscles of rhesus monkeys. J Neurocytol. 1978; 7:693–708.10.1007/BF01205145

    > Crossref MedlineGoogle Scholar
  • 39.Lukas JR, Blumer R, Aigner M, Denk M, Baumgartner I, Mayr R. Proprioception from extra-ocular muscles in the human: on the morphology of muscle spindles [article in German]. Klin Monbl Augenheilkd. 1997; 211:183–187.10.1055/s-2008-1035119

    > Crossref MedlineGoogle Scholar
  • 40.Bruenech JR, Kjellevold Haugen IB. Histological analysis of sensory receptors in human extraocular muscles. Acta Ophthalmologica. 2008; 86:S243.10.1111/j.1755-3768.2008.5122.x

    > CrossrefGoogle Scholar
  • 41.Ruskell GL. The incidence and variety of Golgi tendon organs in extraocular muscles of the rhesus monkey. J Neurocytol. 1979; 8:639–653.10.1007/BF01208514

    > Crossref MedlineGoogle Scholar
  • 42.Blumer R, Lukas JR, Wasicky R, Mayr R. Presence and structure of innervated myotendinous cylinders in sheep extraocular muscle. Neurosci Lett. 1998; 248:49–52.10.1016/S0304-3940(98)00331-0

    > Crossref MedlineGoogle Scholar
  • 43.Blumer R, Lukas JR, Wasicky R, Mayr R. Presence and morphological variability of Golgi tendon organs in the distal portion of sheep extraocular muscle. Anat Rec. 2000; 258:359–368.10.1002/(SICI)1097-0185(20000401)258:4<359::AID-AR4>3.0.CO;2-3

    > Crossref MedlineGoogle Scholar
  • 44.Dogiel AS. The endings of the sensory nerves in the eye muscles and their tendons in man and mammals [article in German]. Archiv für Mikroskopische Anatomie. 1906; 68:501–526.10.1007/BF02979882

    > CrossrefGoogle Scholar
  • 45.Alvarado-Mallart RM, Pinçon-Raymond J. The palisade endings of cat extraocular muscles: a light and electron microscope study. Tissue Cell. 1979; 11:567–584.10.1016/0040-8166(79)90063-6

    > Crossref MedlineGoogle Scholar
  • 46.Blumer R, Konakci KZ, Pomikal C, Wieczorek G, Lukas JR, Streicher J. Palisade endings: cholinergic sensory organs or effector organs?Invest Ophthalmol Vis Sci. 2009; 50:1176–1186.10.1167/iovs.08-2748

    > Crossref MedlineGoogle Scholar
  • 47.Lienbacher K, Horn AK. Palisade endings and proprioception in extraocular muscles: a comparison with skeletal muscles. Biol Cybern. 2012; 106:643–655.10.1007/s00422-012-0519-1

    > Crossref MedlineGoogle Scholar
  • 48.Sodi A, Corsi M, Faussone Pellegrini MS, Salvi G. Fine structure of the receptors at the myotendinous junction of human extraocular muscles. Histol Histopathol. 1988; 3:103–113.

    > MedlineGoogle Scholar
  • 49.Eberhorn AC, Horn AK, Eberhorn N, Fischer P, Boergen KP, Büttner-Ennever JA. Palisade endings in extraocular eye muscles revealed by SNAP-25 immunoreactivity. J Anat. 2005; 206:307–315.10.1111/j.1469-7580.2005.00378.x

    > Crossref MedlineGoogle Scholar
  • 50.Lukas JR, Blumer R, Denk M, Baumgartner I, Neuhuber W, Mayr R. Innervated myotendinous cylinders in human extraocular muscles. Invest Ophthalmol Vis Sci. 2000; 41:2422–2431.

    > MedlineGoogle Scholar
  • 51.Lienbacher K, Mustari M, Ying HS, Büttner-Ennever JA, Horn AK. Do palisade endings in extraocular muscles arise from neurons in the motor nuclei?Invest Ophthalmol Vis Sci. 2011; 52:2510–2519.10.1167/iovs.10-6008

    > Crossref MedlineGoogle Scholar
  • 52.Bruenech JR, Kjellevold Haugen I-B, Bak U, Maagaard M, VanderWerf F. The oculomotor system's ability to adapt to structural changes caused by the process of senescence: a review. Scandinavian Journal of Optometry and Visual Science. 2012; 5:1–14.10.5384/sjovs.vol5i1p1-14

    > CrossrefGoogle Scholar
  • 53.Richmond FJ, Johnston WS, Baker RS, Steinbach MJ. Palisade endings in human extraocular muscles. Invest Ophthalmol Vis Sci. 1984; 25:471–476.

    > MedlineGoogle Scholar
  • 54.Blumer R, Konakci KZ, Streicher J, Hoetzenecker W, Blumer MJ, Lukas JR. Proprioception in the extraocular muscles of mammals and man. Strabismus. 2006; 14;101–106.10.1080/09273970600701192

    > Crossref MedlineGoogle Scholar
  • 55.Sas J, Scháb R. The so-called ‘palisade’ endings of the eye muscles [article in German]. Acta Morphologica Academiae Scientiarum Hungaricai. 1952; 2:259–266.

    > Google Scholar
  • 56.Konakci KZ, Streicher J, Hoetzenecker W, Blumer MJ, Lukas JR, Blumer R. Molecular characteristics suggest an effector function of palisade endings in extraocular muscles. Invest Ophthalmol Vis Sci. 2005; 46:155–165.10.1167/iovs.04-1087

    > Crossref MedlineGoogle Scholar
  • 57.Zimmermann L, May PJ, Pastor AM, Streicher J, Blumer R. Evidence that the extraocular motor nuclei innervate monkey palisade endings. Neurosci Lett. 2011; 489:89–93.10.1016/j.neulet.2010.11.072

    > Crossref MedlineGoogle Scholar
  • 58.Schiavi C. Extraocular muscles tension, tonus, and proprioception in infantile strabismus: role of the oculomotor system in the pathogenesis of infantile strabismus. Scientifica (Cairo). 2016; 2016:5790981.

    > MedlineGoogle Scholar
  • 59.Billig I, Buisseret Delmas C, Buisseret P. Identification of nerve endings in cat extraocular muscles. Anat Rec. 1997; 248:566–575.10.1002/(SICI)1097-0185(199708)248:4<566::AID-AR8>3.0.CO;2-J

    > Crossref MedlineGoogle Scholar
  • 60.Wang X, Zhang M, Cohen IS, Goldberg ME. The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci. 2007; 10:640–646.10.1038/nn1878

    > Crossref MedlineGoogle Scholar
  • 61.Campos EC, Chiesi C, Bolzani R. Abnormal spatial localization in patients with herpes zoster ophthalmicus: evidence for the presence of proprioceptive information. Arch Ophthalmol. 1986; 104:1176–1177.10.1001/archopht.1986.01050200082055

    > Crossref MedlineGoogle Scholar
  • 62.Porter JD. Brainstem terminations of extraocular muscle primary afferent neurons in the monkey. J Comp Neurol. 1986; 247:133–143.10.1002/cne.902470202

    > Crossref MedlineGoogle Scholar
  • 63.Porter JD, Spencer RF. Localization and morphology of cat extra-ocular muscle afferent neurones identified by retrograde transport of horseradish peroxidase. J Comp Neurol. 1982: 204:56–64.10.1002/cne.902040107

    > Crossref MedlineGoogle Scholar
  • 64.Büttner-Ennever JA. Anatomy of the oculomotor system. Dev Ophthalmol. 2007; 40:1–14.10.1159/000100345

    > Crossref MedlineGoogle Scholar
  • 65.Fischer MD, Budak MT, Bakay M, et al.Definition of the unique human extraocular muscle allotype by expression profiling. Physiol Genomics. 2005; 22:283–291.10.1152/physiolgenomics.00158.2004

    > Crossref MedlineGoogle Scholar
  • 66.Kim SH, Yi ST, Cho YA, Uhm CS. Ultrastructural study of extra-ocular muscle tendon axonal profiles in infantile and intermittent exotropia. Acta Ophthalmol Scand. 2006; 84:182–187.10.1111/j.1600-0420.2005.00556.x

    > Crossref MedlineGoogle Scholar
  • 67.Paik HJ, Kang KD, Choi JS, Choi BG, Yim HB. Effects of botulinum A toxin injection on the extraocular muscle fiber layers: comparison between subtenon injection and intramuscular injection. Jpn J Ophthalmol. 2009; 53:229–234.10.1007/s10384-009-0658-7

    > Crossref MedlineGoogle Scholar
  • 68.Suh YW, Uhm CS, Cho YA. Ultrastructural changes in myotendinous nerve endings induced by injection of botulinum toxin into the extraocular muscle. Graefes Arch Clin Exp Ophthalmol. 2010; 248:1795–1801.10.1007/s00417-010-1513-8

    > Crossref MedlineGoogle Scholar
  • 69.Corsi M, Sodi A, Salvi G, Faussone-Pellegrini MS. Morphological study of extraocular muscle proprioceptor alterations in congenital strabismus. Ophthalmologica. 1990; 200:154–163.10.1159/000310097

    > Crossref MedlineGoogle Scholar
  • 70.Li J, Shen C. Histological and ultrastructural studies of extraocular muscle proprioceptor in concomitant strabismus [article in Chinese]. Zhonghua Yan Ke Za Zhi. 2001; 37:200–202.

    > MedlineGoogle Scholar
  • 71.Domenici-Lombardo L, Corsi M, Mencucci R, et al.Extraocular muscles in congenital strabismus: muscle fiber and nerve ending ultrastructure according to different regions. Ophthalmologica. 1992; 205:29–39.10.1159/000310308

    > Crossref MedlineGoogle Scholar
  • 72.Park SE, Sa HS, Oh SY. Innervated myotendinous cylinders alterations in human extraocular muscles in patients with strabismus. Korean J Ophthalmol. 2009; 23:93–99.10.3341/kjo.2009.23.2.93

    > Crossref MedlineGoogle Scholar
  • 73.Hertle RW, Chan CC, Galita DA, Maybodi M, Crawford MA. Neuroanatomy of the extraocular muscle tendon enthesis in macaque, normal human, and patients with congenital nystagmus. JAAPOS. 2002; 6:319–327.

    > MedlineGoogle Scholar
  • 74.Tamura O, Mitsui T. The magician's forceps phenomenon in exotropia under general anaesthesia. Br J Ophthalmol. 1986; 70:549–552.10.1136/bjo.70.7.549

    > Crossref MedlineGoogle Scholar
  • 75.Legrand A, Quoc EB, Vacher SW, et al.Postural control in children with strabismus: effect of eye surgery. Neurosci Lett. 2011; 501:96–101.10.1016/j.neulet.2011.06.056

    > Crossref MedlineGoogle Scholar
  • 76.Steinbach MJ, Kirshner EL, Arstikaitis MJ. Recession vs marginal myotomy surgery for strabismus: effects on spatial localization. Invest Ophthalmol Vis Sci. 1987; 28:1870–1872.

    > MedlineGoogle Scholar
  • 77.Jaggi GP, Laeng HR, Müntener M, Killer HE. The anatomy of the muscle insertion (scleromuscular junction) of the lateral and medial rectus muscle in humans. Invest Ophthalmol Vis Sci. 2005; 46:2258–2263.10.1167/iovs.04-1164

    > Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×