Abstract
Purpose
To investigate whether wide-angle fluorescein angiography (FA) was useful for detecting familial exudative retinopathy (FEVR) in patients with neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV).
Methods
This was a retrospective chart review from 2013 to 2023 of all consecutive patients with NEDSDV and pathogenic or likely pathogenic CTNNB1 variants.
Results
Seven patients (four females, three males) were seen in the ophthalmology clinic (median age: 14 months). One patient presented with a retinal fold in one eye, was observed without FA, and later developed a tractional retinal detachment involving the macula in the contralateral eye. Another patient observed without FA lost vision due to vitreous hemorrhage. Five patients who lacked signs of FEVR in clinic underwent FA under anesthesia; three showed retinal neovascularization or leakage requiring treatment, one showed mild avascularity, and one was normal.
Conclusions
Despite reassuring eye examinations in the clinic, two patients with NEDSDV experienced vi- sion loss from FEVR, and three patients were found by FA to require treatment. FA aided in the detection of FEVR in these patients.
[J Pediatr Ophthalmol Strabismus. 20XX;X(X):XXX–XXX.]
- 1. . Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012; 367(20):1921–1929.
10.1056/NEJMoa1206524 PMID:23033978 > Crossref MedlineGoogle Scholar - 2. . A de novo CTNNB1 novel splice variant in an adult female with severe intellectual disability. Int Med Case Rep J. 2020; 13:487–492.
10.2147/IMCRJ.S270487 PMID:33116939 > Crossref MedlineGoogle Scholar - 3. . De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet. 2015; 134(1):97–109.
10.1007/s00439-014-1498-1 PMID:25326669 > Crossref MedlineGoogle Scholar - 4. . Correlation between phenotype and genotype in CTNNB1 syndrome: a systematic review of the literature. Int J Mol Sci. 2022; 23(20):12564.
10.3390/ijms232012564 PMID:36293418 > Crossref MedlineGoogle Scholar - 5. . Familial exudative vitreoretinopathy. Am J Ophthalmol. 1969; 68(4):578–594.
10.1016/0002-9394(69)91237-9 PMID:5394449 > Crossref MedlineGoogle Scholar - 6. . Familial exudative vitreoretinopathy. Trans Am Ophthalmol Soc. 1995; 93:473–521. PMID:
8719692 > MedlineGoogle Scholar - 7. . High prevalence of peripheral retinal vascular anomalies in family members of patients with familial exudative vitreoretinopathy. Ophthalmology. 2014; 121(1):262–268.
10.1016/j.ophtha.2013.08.010 PMID:24084499 > Crossref MedlineGoogle Scholar - 8. . Vitreoretinopathy in asymptomatic children with CTNNB1 syndrome. JAMA Ophthalmol. 2024; 142(9):874–878.
10.1001/jamaophthalmol.2024.2847 PMID:39145965 > Crossref MedlineGoogle Scholar - 9. . Diversity of retinal vascular anomalies in patients with familial exudative vitreoretinopathy. Ophthalmology. 2014; 121(11):2220–2227.
10.1016/j.ophtha.2014.05.029 PMID:25005911 > Crossref MedlineGoogle Scholar - 10. . ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018; 46(D1):D1062–D1067.
10.1093/nar/gkx1153 PMID:29165669 > Crossref MedlineGoogle Scholar - 11. . Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes. Nat Commun. 2020; 11(1):2539.
10.1038/s41467-019-12438-5 PMID:32461613 > Crossref MedlineGoogle Scholar - 12. . DbSNP: a database of single nucleotide polymorphisms. Vol 28.; 2000.
10.1093/nar/28.1.352 > CrossrefGoogle Scholar - 13. . Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5):405–424.
10.1038/gim.2015.30 PMID:25741868 > Crossref MedlineGoogle Scholar - 14. . Genetic landscape of pediatric movement disorders and management implications. Neurol Genet. 2018; 4(5):e265.
10.1212/NXG.0000000000000265 PMID:30283815 > Crossref MedlineGoogle Scholar - 15. . Novel mutation in CTNNB1 causes familial exudative vitreoretinopathy (FEVR) and microcephaly: case report and review of the literature. Ophthalmic Genet. 2020; 41(1):63–68.
10.1080/13816810.2020.1723118 PMID:32039639 > Crossref MedlineGoogle Scholar - 16. . CTNNB1 mutation associated with familial exudative vitreoretinopathy (FEVR) phenotype. Ophthalmic Genet. 2016; 37(4):468–470.
10.3109/13816810.2015.1120318 PMID:26967979 > Crossref MedlineGoogle Scholar - 17. . A new intellectual disability syndrome caused by CTNNB1 haploinsufficiency. Am J Med Genet A. 2014; 164A(6):1571–1575.
10.1002/ajmg.a.36484 PMID:24668549 > Crossref MedlineGoogle Scholar - 18. . Targeted next-generation sequencing analysis of 1,000 individuals with intellectual disability. Hum Mutat. 2015; 36(12):1197–1204.
10.1002/humu.22901 PMID:26350204 > Crossref MedlineGoogle Scholar - 19. . CTNNB1-related neurodevelopmental disorder in a Chinese population: a case series. Am J Med Genet A. 2022; 188(1):130–137.
10.1002/ajmg.a.62504 PMID:34558805 > Crossref MedlineGoogle Scholar - 20. . Familial exudative vitreoretinopathy and systemic abnormalities in patients with CTNNB1 mutations. Invest Ophthalmol Vis Sci. 2023; 64(2):18.
10.1167/iovs.64.2.18 PMID:36790797 > Crossref MedlineGoogle Scholar - 21. . Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet. 2020; 52(10):1046–1056.
10.1038/s41588-020-0695-1 PMID:32989326 > Crossref MedlineGoogle Scholar - 22. . Heterozygous CTNNB1 and TBX4 variants in a patient with abnormal lung growth, pulmonary hypertension, microcephaly, and spasticity. Clin Genet. 2019; 96(4):366–370.
10.1111/cge.13605 PMID:31309540 > Crossref MedlineGoogle Scholar - 23. . Case report: a de novo CTNNB1 nonsense mutation associated with neurodevelopmental disorder, retinal detachment, polydactyly. Front Pediatr. 2020; 8:575673.
10.3389/fped.2020.575673 > Crossref MedlineGoogle Scholar - 24. . Clinical features associated with CTNNB1 de novo loss of function mutations in ten individuals. Eur J Med Genet. 2017; 60(2):130–135.
10.1016/j.ejmg.2016.11.008 PMID:27915094 > Crossref MedlineGoogle Scholar - 25. . Exonic mosaic mutations contribute risk for autism spectrum disorder. Am J Hum Genet. 2017; 101(3):369–390.
10.1016/j.ajhg.2017.07.016 PMID:28867142 > Crossref MedlineGoogle Scholar - 26. . Beta-catenin in schizophrenia: possibly deleterious novel mutation. Psychiatry Res. 2015; 228(3):843–848.
10.1016/j.psychres.2015.05.014 PMID:26027441 > Crossref MedlineGoogle Scholar - 27. . Exome sequencing identifies a de novo mutation of CTNNB1 gene in a patient mainly presented with retinal detachment, lens and vitreous opacities, microcephaly, and developmental delay: case report and literature review. Medicine (Baltimore). 2017; 96(20):e6914.
10.1097/MD.0000000000006914 PMID:28514307 > Crossref MedlineGoogle Scholar - 28. . Effectiveness of whole-exome sequencing and costs of the traditional diagnostic trajectory in children with intellectual disability. Genet Med. 2016; 18(9):949–956.
10.1038/gim.2015.200 PMID:26845106 > Crossref MedlineGoogle Scholar - 29. . Defects in the cell signaling mediator β-catenin cause the retinal vascular condition FEVR. Am J Hum Genet. 2017; 100(6):960–968.
10.1016/j.ajhg.2017.05.001 PMID:28575650 > Crossref MedlineGoogle Scholar - 30. . Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017; 376(1):21–31.
10.1056/NEJMoa1516767 PMID:27959697 > Crossref MedlineGoogle Scholar - 31. . A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet. 2016; 53(2):98–110.
10.1136/jmedgenet-2015-103302 PMID:26502894 > Crossref MedlineGoogle Scholar - 32. . Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016; 18(7):696–704.
10.1038/gim.2015.148 PMID:26633542 > Crossref MedlineGoogle Scholar - 33. . Missense variants in CTNNB1 can be associated with vitreoretinopathy: seven new cases of CTNNB1-associated neurodevelopmental disorder including a previously unreported retinal phenotype. Mol Genet Genomic Med. 2021; 9(1):e1542.
10.1002/mgg3.1542 PMID:33350591 > Crossref MedlineGoogle Scholar - 34. . Novel CTNNB1 variant leading to neurodevelopmental disorder with spastic diplegia and visual defects plus peripheral neuropathy: a case report. Am J Med Genet A. 2022; 188(10):3118–3120.
10.1002/ajmg.a.62902 PMID:35880249 > Crossref MedlineGoogle Scholar - 35. . Germline mutations in CTNNB1 associated with syndromic FEVR or Norrie disease. Invest Ophthalmol Vis Sci. 2019; 60(1):93–97.
10.1167/iovs.18-25142 PMID:30640974 > Crossref MedlineGoogle Scholar - 36. . Diagnostic odyssey in severe neurodevelopmental disorders: toward clinical whole-exome sequencing as a first-line diagnostic test. ClinGenet. 2016; 89(6):700–707.
10.1111/cge.12732 PMID:26757139 > Crossref MedlineGoogle Scholar - 37. . CTNNB1 (bcatenin) vitreoretinopathy: imaging characteristics and surgical management. Retin Cases Brief Rep. 2022; 16(3):259–262. PMID:
32150115 > Crossref MedlineGoogle Scholar - 38. . Dominant b-catenin mutations cause intellectual disability with recognizable syndromic features. J Clin Invest. 2014; 124(4):1468–1482.
10.1172/JCI70372 PMID:24614104 > Crossref MedlineGoogle Scholar - 39. . Identification of a novel splice mutation in CTNNB1 gene in a Chinese family with both severe intellectual disability and serious visual defects. Neurol Sci. 2019; 40(8):1701–1704.
10.1007/s10072-019-03823-5 PMID:30929091 > Crossref MedlineGoogle Scholar - 40. . Genetic and clinical characteristics of 24 mainland Chinese patients with CTNNB1 loss-of-function variants. Mol Genet Genomic Med. 2022; 10(11):e2067.
10.1002/mgg3.2067 PMID:36153650 > Crossref MedlineGoogle Scholar - 41. . Severe exudative vitreoretinopathy as a common feature for CTNNB1, KIF11 and NDP variants plus sector degeneration for KIF11. Am J Ophthalmol. 2022; 235:178–187.
10.1016/j.ajo.2021.09.017 PMID:34582765 > Crossref MedlineGoogle Scholar - 42. . GABBR2 mutations determine phenotype in Rett syndrome and epileptic encephalopathy. Ann Neurol. 2017; 82(3):466–478.
10.1002/ana.25032 PMID:28856709 > Crossref MedlineGoogle Scholar - 43. . Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012; 485:246–250.
10.1038/nature10989 > Crossref MedlineGoogle Scholar - 44. . A de novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: a case report. BMC Neurol. 2016; 16(1):35.
10.1186/s12883-016-0554-y PMID:26968164 > Crossref MedlineGoogle Scholar