Skip to main content
Journal of Refractive Surgery, 2013;22(9):926–931

Abstract

ABSTRACT

PURPOSE: To compare the visual and optical performance after penetrating keratoplasty (PK) for keratoconus to normal patients and to examine the relationship between corneal wavefront aberrations and visual performance in patients with PK.

METHODS: Visual performance testing, with optimal refractive correction, included low contrast visual acuity (LCVA) and Pelli-Robson contrast sensitivity with and without glare, and high contrast visual acuity. Corneal first surface wavefront aberrations were calculated from EyeSys topography data using VOL-Pro software v7.00 for a 4.0-mm pupil as a 10th order Zernike expansion and converted into single value metrics. Normal patients were compared to patients with PK using analysis of variance, and linear regression was used to compare wavefront aberration metrics to visual performance.

RESULTS: Patients with PK (n=14, age 41.6±7.0 years) and normal patients (n=14, age 36.7±9.0 years) were of similar age (F^sub 1,26^=2.54, P=.12). Normal patients saw significantly better on all visual performance measures and had better optical performance for total higher order root-mean-square corneal wavefront aberration (mean±SD): PK, 0.67±0.41 µm; normal, 0.09±0.02 µm (F^sub 1,26^=28.41, P<.001) and across all Zernike orders and modes. Wavefront aberrations in PK eyes were dominated by trefoil 0.35±0.27 µm, coma 0.47±0.37 µm, spherical aberration 0.17±0.10 µm, and tetrafoil 0.12±0.07 µm. The relationships between corneal wavefront aberration and visual performance metrics were strongest for LCVA=0.30-0.98Pupil fraction for wavefront (tessellation) -0.04Half width at half height, Rp 2=0.75.

CONCLUSIONS: In this series, patients with PK had poorer visual performance compared to normal patients, which is due to increased corneal wavefront aberrations. Outcomes research in corneal transplantation should include measurement of wavefront aberrations and visual performance in the contrast domain. [J Refract Surg. 2006;22:926-931.]

  • 1. Williams KA, Hornsby NB, Bartlett CM, Holland HK, Esterman A, Coster DJ. The Australian Corneal Graft Registry. Adelaide, Australia: Snap Printing; 2004.

    > Google Scholar
  • 2. Hellstedt T, Makela J, Uusitalo R, Emre S, Uusitalo R. Treating keratoconus with Intacs corneal ring segments. J Refract Surg. 2005;21:236-246.

    > Google Scholar
  • 3. Funnell CL, Ball J, Noble BA. Comparative cohort study of the outcomes of deep lamellar keratoplasty and penetrating keratoplasty for keratoconus. Eye. 2006;20:527-532.

    > Google Scholar
  • 4. Lim L, Pesudovs K, Coster DJ. Penetrating keratoplasty for keratoconus: visual outcome and success. Ophthalmology. 2000;107:1125-1131.

    > Google Scholar
  • 5. Lawless M, Coster DJ, Phillips AJ, Loane M. Keratoconus: diagnosis and management. Aust NZJ Ophthalmol. 1989;17:33-60.

    > Google Scholar
  • 6. Pesudovs K, Marsack JD, Donnelly WJ III, Thibos LN, Applegate RA. Measuring visual acuity - mesopic or photopic conditions, and high or low contrast letters? J Refract Surg. 2004;20:S508-S514.

    > Google Scholar
  • 7. McLeod SD. Beyond Snellen acuity: the assessment of visual function after refractive surgery. Arch Ophthalmol. 2001;119:1371-1373.

    > Google Scholar
  • 8. Lass JH, Lembach RG, Park SB, Horn DL, Fritz ME, Svilar GM, Nuamah IF, Reinhart WJ, Stocker EG, Keates RH, et al. Clinical management of keratoconus. A multicenter analysis. Ophthalmology. 1990;97:433-445.

    > Google Scholar
  • 9. Crews MJ, Driebe WTJ, Stern GA. The clinical management of keratoconus: a 6 year retrospective study. CLAO J. 1994;20:194-197.

    > Google Scholar
  • 10. Yagci A, Egrilmez S, Kaskaloglu M, Egrilmez ED. Quality of vision following clinically successful penetrating keratoplasty. J Cataract Refract Surg. 2004;30:1287-1294.

    > Google Scholar
  • 11. Carney LG, Jacobs RJ. Problems remaining after keratoplasty for keratoconus. Clin Exp Optom. 1989;72:22-25.

    > Google Scholar
  • 12. Carney LG, Lembach RG. Management of keratoconus: comparative visual assessments. CLAOJ. 1991;17:52-58.

    > Google Scholar
  • 13. Mannis MJ, Zadnik K, Johnson CA, Adams C. Contrast sensitivity after penetrating keratoplasty. Arch Ophthalmol. 1987;105:1220-1223.

    > Google Scholar
  • 14. Mae da N, Sato S, Watanabe H, Inoue Y, Fujikado T, Shimomura Y, Tano Y. Prediction of letter contrast sensitivity using videokeratographic indices. Am J Oph thalm of. 2000;129:759-763.

    > Google Scholar
  • 15. Applegate RA, Hilmantel G, Howland HC, Tu EY, Starck T, Zayac EJ. Corneal first surface optical aberrations and visual performance. J Refract Surg. 2000;16:507-514.

    > Google Scholar
  • 16. Pesudovs K, Schone veld P, Seto RJ, Coster DJ. Contrast and glare testing in keratoconus and after penetrating keratoplasty. Br J Ophthalmol. 2004;88:653-657.

    > Google Scholar
  • 17. Miller D, Sanghvi S. Contrast sensitivity and glare testing in corneal disease. In: Nadler MP, Miller D, Nadler DJ, eds. Glare and Contrast Sensitivity for Clinicians. New York, NY: Springer Verlag; 1990:45-52.

    > Google Scholar
  • 18. Brahma A, Ennis F, Harper R, Ridgway A, Tullo A. Visual function after penetrating keratoplasty for keratoconus: a prospective longitudinal evaluation. Br J Ophthalmol. 2000;84:60-66.

    > Google Scholar
  • 19. Shah S, Naroo S, Hosking S, Gherghel D, Mantry S, Banner jee S, Pedwell K, Bains HS. Nidek OPD-scan analysis of normal, keratoconic, and penetrating keratoplasty eyes. J Refract Surg. 2003;19:S255-S259.

    > Google Scholar
  • 20. Pelli DG, Robson JG, Wilkins AJ. The design of a new letter chart for measuring contrast sensitivity. Clin Vis Sci. 1988;2:187-199.

    > Google Scholar
  • 21. Pesudovs K, Coster DJ. Assessment of visual function in cataract patients with a mean visual acuity of 6/9. Aust N Z J Ophthalmol. 1996;24:S5-S9.

    > Google Scholar
  • 22. Lenne RC, Smith G, Vingrys AJ. Automated visual acuity testing. Clin Exp Optom. 1994;77:190-195.

    > Google Scholar
  • 23. Regan D, Giaschi DE, Fresco BB. Measurement of glare sensitivity in cataract patients using low-contrast letter charts. Ophthalmic Physiol Opt. 1993;13:115-123.

    > Google Scholar
  • 24. Laidlaw D, Had dad R. Can second eye cataract surgery be justified? Eye. 1993;7:680-686.

    > Google Scholar
  • 25. Pesudovs K, Hazel CA, Doran RM, Elliott DB. The usefulness of Vistech and FACT contrast sensitivity charts for cataract and refractive surgery outcomes research. Br J Ophthalmol. 2004;88:11-16.

    > Google Scholar
  • 26. Elliott DB, Bullimore MA, Bailey IL. Improving the reliability of the Pelli-Robson contrast sensitivity test. Clin Vis Sci. 1991;6:471-475.

    > Google Scholar
  • 27. Thibos LN, Hong X, Bradley A, Applegate RA. Accuracy and precision of objective refraction from wavefront aberrations. J Vis. 2004;4:329-351.

    > Google Scholar
  • 28. Marsack JD, Thibos LN, Applegate RA. Metrics of optical quality derived from wave aberrations predict visual performance. J Vis. 2004;4:322-328.

    > Google Scholar
  • 29. Campbell CE. A new method for describing the aberrations of the eye using Zernike polynomials. Optom Vis Sci. 2003;80:79-83.

    > Google Scholar
  • 30. Khong AM, Mannis MJ, Plotnik RD, Johnson CA. Computerized topographic analysis of the healing graft after penetrating keratoplasty for keratoconus. Am J Ophthalmol. 1993;115:209-215.

    > Google Scholar
  • 31. Zadnik K, Mannis MJ, Johnson CA. An analysis of contrast sensitivity in identical twins with keratoconus. Cornea. 1984;3:99-103.

    > Google Scholar
  • 32. Vizmanos JG, de la Fuente I, Matesanz BM, Aparicio JA. Influence of surround illumination on pupil size and contrast sensitivity. Ophthalmic Physiol Opt. 2004;24:464-468.

    > Google Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×