Skip to main content
Journal of Refractive Surgery, 2009;25(12):1053–1060
Published Online:https://doi.org/10.3928/1081597X-20091117-04Cited by:385

Abstract

Purpose:

To evaluate femtosecond laser lens fragmentation and anterior capsulotomy in cataract surgery.

Methods:

Anterior capsulotomy and phacofragmentation procedures performed with an intraocular femtosecond laser (LenSx Lasers Inc) were initially evaluated in ex vivo porcine eyes. These procedures were then performed in an initial series of nine patients undergoing cataract surgery. In addition to standard intraoperative assessments (including capsulotomy diameter accuracy and reproducibility), optical coherence tomography was used to evaluate human procedures.

Results:

For an intended 5-mm capsulorrhexis in porcine eyes, average achieved diameters were 5.88±0.73 mm using a standard manual technique and 5.02±0.04 mm using the femtosecond laser. Scanning electron microscopy revealed equally smooth cut edges of the capsulotomy with the femtosecond laser and manual technique. Compared to control porcine eyes, femtosecond laser phacofragmentation resulted in a 43% reduction in phacoemulsification power and a 51% decrease in phacoemulsification time. In a small series of human clinical procedures, femtosecond laser capsulotomies and phacofragmentation demonstrated similarly high levels of accuracy and effectiveness, with no operative complications.

Conclusions:

Initial results with an intraocular femtosecond laser demonstrate higher precision of capsulorrhexis and reduced phacoemulsification power in porcine and human eyes.

[J Refract Surg. 2009;25:1053–1060.]

  • 1.2009 Comprehensive Report on the Global Single-Use Ophthalmic Surgical Product Market. Market Scope. August2009.

    > Google Scholar
  • 2.Leaming DV. Practice styles and preferences of ASCRS members—2003 survey. J Cataract Refract Surg. 2004; 30:892–900.

    > Crossref MedlineGoogle Scholar
  • 3.Leaming DV. Practices styles and preferences of ASCRS members—2001 survey. J Cataract Refract Surg. 2002; 28:1681–1688.

    > Crossref MedlineGoogle Scholar
  • 4.Marques FF, Marques DM, Osher RH, Osher JM. Fate of anterior capsule tears during cataract surgery. J Cataract Refract Surg. 2006; 32:1638–1642.

    > Crossref MedlineGoogle Scholar
  • 5.Dick HB, Peña-Aceves A, Manns A, Krummenauer F. New technology for sizing the continuous curvilinear capsulorhexis: prospective trial. J Cataract Refract Surg. 2008; 34:1136–1144.

    > Crossref MedlineGoogle Scholar
  • 6.Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 2008; 34:368–376.

    > Crossref MedlineGoogle Scholar
  • 7.Hollick EJ, Spalton DJ, Meacock WR. The effect of capsulorhexis on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol. 1999; 128:271–279.

    > Crossref MedlineGoogle Scholar
  • 8.Can I, Takmaz T, Cakici F, Ozgül M. Comparison of Nagahara phaco-chop and stop-and-chop phacoemulsification nucleotomy techniques. J Cataract Refract Surg. 2004; 30:663–668.

    > Crossref MedlineGoogle Scholar
  • 9.Vogel A, Schweiger P, Frieser A, Asiyo MN, Birngruber R. Intraocular Nd:YAG laser surgery: light-tissue interaction, damage range, and reduced collateral effects. IEEE Journal of Quantum Electronics. 1990; 26:2240–2260.

    > CrossrefGoogle Scholar
  • 10.Loesel FH, Niemz MH, Bille JF, Juhasz T. Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration. IEEE Journal of Quantum Electronics. 1996; 32:1717–1722.

    > CrossrefGoogle Scholar
  • 11.Juhasz T, Kastis G, Suárez C, Turi L, Bor Z, Bron WE. Shock-wave and cavitation bubble dynamics during photodisruption in ocular media and their dependence on the pulse duration. In: Jacques SL, ed. Laser-Tissue Interactions VII. Proceedings of SPIE. 1996; 2681:428–436.

    > CrossrefGoogle Scholar
  • 12.Kurtz RM, Liu X, Elner VM, Squier JA, Du D, Mourou G. Photodisruption in the human cornea as a function of laser pulse width. J Cataract Refract Surg. 1997; 13:653–658.

    > LinkGoogle Scholar
  • 13.Seitz B, Langenbucher A, Homann-Rummelt C, Schlötzer-Schrehardt U, Naumann GO. Nonmechanical posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation. Am J Ophthalmol. 2003; 136:769–772.

    > Crossref MedlineGoogle Scholar
  • 14.Juhasz T, Loesel FH, Kurtz RM, Horvath C, Bille JF, Mourou G. Corneal refractive surgery with femtosecond lasers. IEEE Journal of Selected Topics in Quantum Electronics. 1999; 5:902–910.

    > CrossrefGoogle Scholar
  • 15.Szczesna DH, Kasprzak HT. The modeling of the influence of a corneal geometry on the pupil image of the human eye. Optik. 2006; 117:341–347.

    > CrossrefGoogle Scholar
  • 16.Holmen JB, Ekesten B, Lundgren B. Anterior chamber depth estimation by Scheimpflug photography. Acta Ophthalmol Scand. 2001; 79:576–579.

    > Crossref MedlineGoogle Scholar
  • 17.Kim YH, Choi JS, Chun HJ, Joo CK. Effect of resection velocity and suction ring on corneal flap formation in laser in situ keratomileusis. J Cataract Refract Surg. 1999; 25:1448–1455.

    > Crossref MedlineGoogle Scholar
  • 18.Trivedi RH, Wilson ME, Bartholomew LR. Extensibility and scanning electron microscopy evaluation of 5 pediatric anterior capsulotomy techniques in a porcine model. J Cataract Refract Surg. 2006; 32:1206–1213.

    > Crossref MedlineGoogle Scholar
  • 19.Wallace RB. Capsulotomy diameter mark. J Cataract Refract Surg. 2003; 29:1866–1868.

    > Crossref MedlineGoogle Scholar
  • 20.Tassignon MJ, Rozema JJ, Gobin L. Ring-shaped caliper for better anterior capsulorhexis sizing and centration. J Cataract Refract Surg. 2006; 32:1253–1255.

    > Crossref MedlineGoogle Scholar
  • 21.Ohmi S. Decentration associated with asymmetric capsular shrinkage and intraocular lens size. J Cataract Refract Surg. 1993; 19:640–643.

    > Crossref MedlineGoogle Scholar
  • 22.Cekic O, Batman C. The relationship between capsulorhexis size and anterior chamber depth relation. Ophthalmic Surg Lasers. 1999; 30:185–190.

    > LinkGoogle Scholar
  • 23.Kanellopoulos AJ, Dodick JM, Brauweiler P, Alzner E. Dodick photolysis for cataract surgery: early experience with the Q-switched neodymium: YAG laser in 100 consecutive patients. Ophthalmology. 1999; 106:2197–2202.

    > Crossref MedlineGoogle Scholar
  • 24.Kanellopoulos AJ; Photolysis Investigative Group. Laser cataract surgery: a prospective clinical evaluation of 1000 consecutive laser cataract procedures using the Dodick photolysis Nd: YAG system. Ophthalmology. 2001; 108:649–655.

    > Crossref MedlineGoogle Scholar
  • 25.Huetz WW, Eckhardt HB. Photolysis using the Dodick-ARC laser system for cataract surgery. J Cataract Refract Surg. 2001; 27:208–212.

    > Crossref MedlineGoogle Scholar
  • 26.Bowman DM, Allen RC. Erbium:YAG laser in cataract extraction. J Long Term Eff Med Implants. 2003; 13:503–508.

    > Crossref MedlineGoogle Scholar
  • 27.Dodick JM, Lally JM, Sperber LT. Lasers in cataract surgery. Curr Opin Ophthalmol. 1993; 4:107–109.

    > Crossref MedlineGoogle Scholar
  • 28.Shin YJ, Nishi Y, Engler C, Kang J, Hashmi S, Jun AS, Gehlbach PL, Chuck RS. The effect of phacoemulsification energy on the redox state of cultured human corneal endothelial cells. Arch Ophthalmol. 2009; 127:435–441.

    > Crossref MedlineGoogle Scholar
  • 29.Murano N, Ishizaki M, Sato S, Fukuda Y, Takahashi H. Corneal endothelial cell damage by free radicals associated with ultrasound oscillation. Arch Ophthalmol. 2008; 126:816–821.

    > Crossref MedlineGoogle Scholar
  • 30.Storr-Paulsen A, Norregaard JC, Ahmed S, Storr-Paulsen T, Pedersen TH. Endothelial cell damage after cataract surgery: divide-and-conquer versus phaco-chop technique. J Cataract Refract Surg. 2008; 34:996–1000.

    > Crossref MedlineGoogle Scholar
  • 31.Richard J, Hoffart L, Chavane F, Ridings B, Conrath J. Corneal endothelial cell loss after cataract extraction by using ultrasound phacoemulsification versus a fluid-based system. Cornea. 2008; 27:17–21.

    > Crossref MedlineGoogle Scholar
  • 32.Hansen WP, Fine S. Melanin granule models for pulse laser induced retinal injury. Applied Optics. 1968; 7:155–159.

    > Crossref MedlineGoogle Scholar
  • 33.Goldman AI, Ham WT, Mueller AH. Ocular damage thresholds and mechanisms for ultrashort pulses of both visible and infrared laser radiation in the rhesus monkey. Exp Eye Res. 1977; 24:45–56.

    > Crossref MedlineGoogle Scholar
  • 34.Cain CP, Toth CA, Noojin GD, Carothers V, Stolarski DJ, Rock-well BA. Thresholds for visible lesions in the primate eye produced by ultrashort near-infrared laser pulses. Invest Ophthalmol Vis Sci. 1999; 40:2343–2349.

    > MedlineGoogle Scholar
  • 35.Zysset B, Fujimoto FG, Deutsch TF. Time-resolved measurements of picosecond optical breakdown. Applied Physics B. 1989; 48:139–147.

    > CrossrefGoogle Scholar
  • 36.Juhasz T, Kastis GA, Suárez C, Bor Z, Bron WE. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Lasers Surg Med. 1996; 19:23–31.

    > Crossref MedlineGoogle Scholar
  • 37.Schumacher S, Sander M, Stolte A, Doepke C, Baumgaertner W, Lubatschowski H. Investigation of possible fs-LASIK induced retinal damage. In: Södergerg PG, Ho A, Manns F, eds. Ophthalmic Technologies XVI. Proceeding of SPIE. 2006; 6138:61381I-1to61381I-9.

    > Google Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×