Skip to main content
Journal of Refractive Surgery, 2011;27(10):711–716
Cite this articlePublished Online:https://doi.org/10.3928/1081597X-20110913-01Cited by:124

Abstract

PURPOSE:

To compare ocular and internal aberrations after femtosecond laser anterior capsulotomy and continuous curvilinear capsulorrhexis in cataract surgery.

METHODS:

In this prospective study, anterior capsulotomy was performed during cataract surgery with an intraocular femtosecond (FS) laser (Alcon LenSx Inc) in 48 eyes. As a control group, continuous curvilinear capsulorrhexis (CCC) was performed in 51 eyes. Wavefront aberrometry, corneal topography, and objective visual quality were measured using the OPD-Scan (NIDEK Co Ltd). Vertical and horizontal tilt, coma, and visual quality metrics were evaluated separately to determine whether the source of aberrations was ocular or internal. Main outcome measures included postoperative residual refraction, uncorrected and corrected visual acuities, ocular and internal aberrations, Strehl ratio, and modulation transfer function (MTF).

RESULTS:

No statistically significant differences were noted between the FS and CCC groups, respectively, in postoperative sphere (−0.60±1.50 vs −0.50±1.40 diopters [D]), postoperative cylinder (1.30±1.01 vs 1.10±1.10 D), uncorrected distance visual acuity (0.86±0.15 vs 0.88±0.08), or corrected distance visual acuity (0.97±0.08 vs 0.97±0.06). The FS group had significantly lower values of intraocular vertical tilt (−0.05±0.36 vs 0.27±0.57) and coma (−0.003±0.11 vs 0.1±0.15), and significantly higher Strehl ratios (0.02±0.02 vs 0.01±0.01) and MTF values at all measured cycles per degree, compared to the CCC group.

CONCLUSIONS:

Capsulotomy performed with an intraocular FS laser induced significantly less internal aberrations measured by the NIDEK OPD-Scan aberrometer compared to eyes that underwent CCC, which may result in better optical quality after the procedure.

  • 1.Dick HB, Pena-Aceves A, Manns A, Krummenauer F. New technology for sizing the continuous curvilinear capsulorhexis: prospective trial. J Cataract Refract Surg. 2008; 34(7):1136–1144.10.1016/j.jcrs.2008.03.025

    > Crossref MedlineGoogle Scholar
  • 2.Tan JC. Capsulotomy. Curr Opin Ophthalmol. 2001; 12(1):82–85.10.1097/00055735-200102000-00014

    > Crossref MedlineGoogle Scholar
  • 3.Ravalico G, Tognetto D, Palomba M, Busatto P, Baccara F. Capsulorhexis size and posterior capsule opacification. J Cataract Refract Surg. 1996; 22(1):98–103.

    > Crossref MedlineGoogle Scholar
  • 4.Aykan U, Bilge AH, Karadayi K. The effect of capsulorhexis size on development of posterior capsule opacification: small (4.5 to 5.0 mm) versus large (6.0 to 7.0 mm). Eur J Ophthalmol. 2003; 13(6):541–545.

    > Crossref MedlineGoogle Scholar
  • 5.Hollick EJ, Spalton DJ, Meacock WR. The effect of capsulorhexis size on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol. 1999; 128(3):271–279.10.1016/S0002-9394(99)00157-9

    > Crossref MedlineGoogle Scholar
  • 6.Krueger RR, Kuszak J, Lubatschowski H, Myers RI, Ripken T, Heisterkamp A. First safety study of femtosecond laser photo-disruption in animal lenses: tissue morphology and cataractogenesis. J Cataract Refract Surg. 2005; 31(12):2386–2394.10.1016/j.jcrs.2005.05.034

    > Crossref MedlineGoogle Scholar
  • 7.Kránitz K, Takacs A, Miháltz K, Kovács I, Knorz MC, Nagy ZZ. Femtosecond laser capsulotomy and manual continuous curvilinear capsulorrhexis parameters and their effects on intraocular lens centration. J Refract Surg. 2011; 27(8):558–563.10.3928/1081597X-20110623-03

    > LinkGoogle Scholar
  • 8.Nagy ZZ, Kránitz K, Takacs AI, Miháltz K, Kovács I, Knorz MC. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J Refract Surg. 2011; 27(8):564–569.10.3928/1081597X-20110607-01

    > LinkGoogle Scholar
  • 9.Nagy Z, Takacs A, Filkorn T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg. 2009; 25(12):1053–1060.10.3928/1081597X-20091117-04

    > LinkGoogle Scholar
  • 10.Baumeister M, Bühren J, Kohnen T. Tilt and decentration of spherical and aspheric intraocular lenses: effect on higher-order aberrations. J Cataract Refract Surg. 2009; 35(6):1006–1012.10.1016/j.jcrs.2009.01.023

    > Crossref MedlineGoogle Scholar
  • 11.Mester U, Sauer T, Kaymak H. Decentration and tilt of a single-piece aspheric intraocular lens compared with the lens position in young phakic eyes. J Cataract Refract Surg. 2009; 35(3):485–490.10.1016/j.jcrs.2008.09.028

    > Crossref MedlineGoogle Scholar
  • 12.Pieh S, Fiala W, Malz A, Stork W. In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses. Invest Ophthalmol Vis Sci. 2009; 50(3):1264–1270.10.1167/iovs.08-2187

    > Crossref MedlineGoogle Scholar
  • 13.Rohart C, Lemarinel B, Thanh HX, Gatinel D. Ocular aberrations after cataract surgery with hydrophobic and hydrophilic acrylic intraocular lenses: comparative study. J Cataract Refract Surg. 2006; 32(7):1201–1205.10.1016/j.jcrs.2006.01.099

    > Crossref MedlineGoogle Scholar
  • 14.Liang J, Grimm B, Goelz S, Bille JF. Objective measurement of wave aberrations of the human eye with the use of the Hartmann–Shack wave front sensor. J Opt Soc Am A. 1994; 11(7):1949–1957.10.1364/JOSAA.11.001949

    > CrossrefGoogle Scholar
  • 15.Walsh G, Charman WN, Howland HC. Objective technique for the determination of monochromatic aberrations of the eye. J Opt Soc Am A. 1984; 1(9):987–992.10.1364/JOSAA.1.000987

    > Crossref MedlineGoogle Scholar
  • 16.Gatinel D, Hoang-Xuan T. Objective assessment of the quality of vision before and after repositioning of a dislocated iris-fixated aphakic anterior chamber lens. J Refract Surg. 2007; 23(9 Suppl):S1005–S1010.

    > AbstractGoogle Scholar
  • 17.Levy J, Lifshitz T, Klemperer I, et al.The effect of Nd:YAG laser posterior capsulotomy on ocular wave front aberrations. Can J Ophthalmol. 2009; 44(5):529–533.10.3129/i09-160

    > Crossref MedlineGoogle Scholar
  • 18.Tutt R, Bradley A, Begley C, Thibos LN. Optical and visual impact of tear break-up in human eyes. Invest Ophthalmol Vis Sci. 2000; 41(13):4117–4123.

    > MedlineGoogle Scholar
  • 19.Lu M, Tilley BCNINDS t-PA Stroke Trial Study Group. Use of odds ratio or relative risk to measure a treatment effect in clinical trials with multiple correlated binary outcomes: data from the NINDS t-PA stroke trial. Stat Med. 2001; 20(13):1891–1901.10.1002/sim.841

    > Crossref MedlineGoogle Scholar
  • 20.Taketani F, Matuura T, Yukawa E, Hara Y. Influence of intraocular lens tilt and decentration on wavefront aberrations. J Cataract Refract Surg. 2004; 30(10):2158–2162.10.1016/j.jcrs.2004.02.072

    > Crossref MedlineGoogle Scholar
  • 21.Korynta J, Bok J, Cendelin J, Michalova K. Computer modeling of visual impairment caused by intraocular lens misalignment. J Cataract Refract Surg. 1999; 25(1):100–105.10.1016/S0886-3350(99)80019-4

    > Crossref MedlineGoogle Scholar
  • 22.Dai GM. Ocular wavefront presentation. In: Wavefront Optics for Vision Correction. Bellingham, WA: SPIE; 2008:33–96.10.1117/3.769212.ch3

    > CrossrefGoogle Scholar
  • 23.Applegate RA, Marsack JD, Ramos R, Sarver EJ. Interaction between aberrations to improve or reduce visual performance. J Cataract Refract Surg. 2003; 29(8):1487–1495.10.1016/S0886-3350(03)00334-1

    > Crossref MedlineGoogle Scholar
  • 24.Miháltz K, Kránitz K, Kovács I, Takács , Németh J, Nagy ZZ. Shifting of the line of sight in keratoconus measured by a Hartmann-Shack sensor. Ophthalmology. 2010; 117(1):41–48.10.1016/j.ophtha.2009.06.039

    > Crossref MedlineGoogle Scholar
  • 25.Guirao A, Williams DR. Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations. J Opt Soc Am A Opt Image Sci Vis. 2001; 18(5):1003–1015.10.1364/JOSAA.18.001003

    > Crossref MedlineGoogle Scholar
  • 26.Thibos LN, Hong X, Bradley A, Cheng X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J Opt Soc Am A Opt Image Sci Vis. 2002; 19(1):2329–2348.10.1364/JOSAA.19.002329

    > Crossref MedlineGoogle Scholar
  • 27.Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol. 2009; 147(2):189–197.10.1016/j.ajo.2008.08.026

    > Crossref MedlineGoogle Scholar
  • 28.Chung SH, Mazur E. Surgical applications of femtosecond lasers. J Biophotonics. 2009; 2(10):557–572.10.1002/jbio.200910053

    > Crossref MedlineGoogle Scholar
  • 29.Kohnen T, Klaproth OK, Bühren J. Effect of intraocular lens asphericity on quality of vision after cataract removal: an intra-individual comparison. Ophthalmology. 2009; 116(9):1697–1706.10.1016/j.ophtha.2009.03.052

    > Crossref MedlineGoogle Scholar
  • 30.Holladay JT, Piers PA, Koranyi G, et al.A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18(6):683–691.

    > LinkGoogle Scholar
  • 31.Dubbelman M, Weeber HA, van der Heijde RG, Völker-Dieben HJ. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol Scand. 2002; 80(4):379–383.10.1034/j.1600-0420.2002.800406.x

    > Crossref MedlineGoogle Scholar
  • 32.Dubbelman M, Sicam VA, van der Heijde RG. The contribution of the posterior surface to the coma aberration of the human cornea. J Vis. 2007; 7(7):10.1–8.10.1167/7.7.10

    > CrossrefGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×