Skip to main content
Journal of Refractive Surgery, 2012;28(4):259–263
Published Online:https://doi.org/10.3928/1081597X-20120309-01Cited by:130

Abstract

PURPOSE:

To compare intraocular lens (IOL) decentration and tilt following a circular capsulotomy created with a femtosecond laser (laser CCC) to a manually performed continuous curvilinear capsulorrhexis (manual CCC).

METHODS:

In a prospective, randomized study, a laser CCC (Alcon LenSx Inc) was performed in 20 eyes from 20 patients and a manual CCC was performed in 25 eyes from 25 patients. Intraocular lens decentration and tilt were measured using a Scheimpflug camera (Pentacam, Oculus Optikgeräte GmbH) 1 year after surgery. Uncorrected (UDVA) and corrected distance visual acuity (CDVA) and manifest refraction were also determined postoperatively. Between-group differences of IOL decentration and tilt as well as the correlation between IOL decentration and postoperative refractive changes and between IOL tilt and visual acuity were analyzed.

RESULTS:

Horizontal and vertical tilt were significantly higher in the manual CCC group (P=.007 and P<.001, respectively). Lenses implanted after manual CCC showed greater horizontal and total decentration (P=.034 and P=.022, respectively). Significant differences were found in the homogeneity of dichotomized IOL vertical tilt and both horizontal and total decentration distribution (P=.008, P=.036, and P=.017, respectively). Total IOL decentration showed a significant correlation with changes in manifest refraction values between 1 month and 1 year after surgery (R=0.33, P=.032). A significant correlation was noted between IOL vertical tilt and CDVA (R2=0.17, β=−0.41, 95% confidence limit: −0.69 to −0.13, P=.005).

CONCLUSIONS:

Continuous curvilinear capsulorrhexis created with a femtosecond laser resulted in a more stable refractive result and less IOL tilt and decentration than manual CCC.

  • 1.2009 comprehensive report on the global single-use ophthalmic surgical product market. Market Scope. August2009.

    Google Scholar
  • 2.Paul T, Braga-Mele R. Bimanual microincisional phacoemulsification: the future of cataract surgery?Curr Opin Ophthalmol. 2005; 16(1):2–7.10.1097/00055735-200502000-00003

    Crossref MedlineGoogle Scholar
  • 3.Auffarth GU, Rabsilber TM, Kohnen T, Holzer MP. Design and optical principles of multifocal lenses [German]. Ophthalmologe. 2008; 105(6):522–526.10.1007/s00347-008-1744-9

    Crossref MedlineGoogle Scholar
  • 4.Riederle F, Buchwald HJ, Preissinger C, Lang GK. Refractive aspects of modern cataract surgery [German]. Klin Monbl Augenheilkd. 2006; 223(12):943–951.10.1055/s-2006-927221

    Crossref MedlineGoogle Scholar
  • 5.Ravalico G, Tognetto D, Palomba M, Busatto P, Baccara F. Capsulorhexis size and posterior capsule opacification. J Cataract Refract Surg. 1996; 22(1):98–103.

    Crossref MedlineGoogle Scholar
  • 6.Aykan U, Bilge AH, Karadayi K, Akin T. The effect of capsulorhexis size on development of posterior capsule opacification: small (4.5 to 5.0 mm) versus large (6.0 to 7.0 mm). Eur J Ophthalmol. 2003; 13(6):541–545.

    Crossref MedlineGoogle Scholar
  • 7.Hollick EJ, Spalton DJ, Meacock WR. The effect of capsulorhexis size on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol. 1999; 128(3):271–279.10.1016/S0002-9394(99)00157-9

    Crossref MedlineGoogle Scholar
  • 8.Ram J, Pandey SK, Apple DJ, et al.Effect of in-the-bag intraocular lens fixation on the prevention of posterior capsule opacification. J Cataract Refract Surg. 2001; 27(7):1039–1046.10.1016/S0886-3350(00)00841-5

    Crossref MedlineGoogle Scholar
  • 9.Chang DF, Dewey S, Tipperman R, Wallace RB. Pearls for sizing the capsulorrhexis. Cataract & Refractive Surgery Today Europe. 2008; 3(9):40–44.

    Google Scholar
  • 10.Hayashi K, Hayashi H, Nakao F, Hayashi F. Anterior capsule contraction and intraocular lens decentration and tilt after hydrogel lens implantation. Br J Ophthalmol. 2001; 85(11):1294–1297.10.1136/bjo.85.11.1294

    Crossref MedlineGoogle Scholar
  • 11.Hayashi H, Hayashi K, Nakao F, Hayashi F. Anterior capsule contraction and intraocular lens dislocation in eyes with pseudoexfoliation syndrome. Br J Ophthalmol. 1998; 82(12):1429–1432.10.1136/bjo.82.12.1429

    Crossref MedlineGoogle Scholar
  • 12.Baumeister M, Bühren J, Kohnen T. Tilt and decentration of spherical and aspheric intraocular lenses: effect on higher-order aberrations. J Cataract Refract Surg. 2009; 35(6):1006–1012.10.1016/j.jcrs.2009.01.023

    Crossref MedlineGoogle Scholar
  • 13.Auran JD, Koester CJ, Donn A. In vivo measurement of posterior chamber intraocular lens decentration and tilt. Arch Ophthalmol. 1990; 108(1):75–79.10.1001/archopht.1990.01070030081033

    Crossref MedlineGoogle Scholar
  • 14.Krueger RR, Kuszak J, Lubatschowski H, Myers RI, Ripken T, Heisterkamp A. First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis. J Cataract Refract Surg. 2005; 31(12):2386–2394.10.1016/j.jcrs.2005.05.034

    Crossref MedlineGoogle Scholar
  • 15.Nagy Z, Takacs A, Filkorn T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg. 2009; 25(12):1053–1060.10.3928/1081597X-20091117-04

    LinkGoogle Scholar
  • 16.Nagy ZZ, Kránitz K, Takacs AI, Miháltz K, Kovács I, Knorz MC. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J Refract Surg. 2011; 27(8):564–569.10.3928/1081597X-20110607-01

    LinkGoogle Scholar
  • 17.Kránitz K, Takacs A, Miháltz K, Kovács I, Knorz MC, Nagy ZZ. Femtosecond laser capsulotomy and manual continuous curvilinear capsulorrhexis parameters and their effects on intraocular lens centration. J Refract Surg. 2011; 27(8):558–563.10.3928/1081597X-20110623-03

    LinkGoogle Scholar
  • 18.Holladay JT, Piers PA, Koranyi G, van der Mooren M, Norrby NE. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002; 18(6):683–691.

    LinkGoogle Scholar
  • 19.Piers PA, Weeber HA, Artal P, Norrby S. Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses. J Refract Surg. 2007; 23(4):374–384.

    LinkGoogle Scholar
  • 20.Becker KA, Auffarth GU, Völcker HE. Measurement method for the determination of rotation and decentration of intraocular lenses [German]. Ophthalmologe. 2004; 101(6):600–603.

    MedlineGoogle Scholar
  • 21.de Castro A, Rosales P, Marcos S. Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study. J Cataract Refract Surg. 2007; 33(3):418–429.10.1016/j.jcrs.2006.10.054

    Crossref MedlineGoogle Scholar
  • 22.Rosales P, De Castro A, Jiménez-Alfaro I, Marcos S. Intraocular lens alignment from Purkinje and Scheimpflug imaging. Clin Exp Optom. 2010; 93(6):400–408.10.1111/j.1444-0938.2010.00514.x

    Crossref MedlineGoogle Scholar
  • 23.Mester U, Sauer T, Kaymak H. Decentration and tilt of a single-piece aspheric intraocular lens compared with the lens position in young phakic eyes. J Cataract Refract Surg. 2009; 35(3):485–490.10.1016/j.jcrs.2008.09.028

    Crossref MedlineGoogle Scholar
  • 24.Eppig T, Scholz K, Löffler A, Messner A, Langenbucher A. Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye. J Cataract Refract Surg. 2009; 35(6):1091–1100.10.1016/j.jcrs.2009.01.034

    Crossref MedlineGoogle Scholar
  • 25.Miháltz K, Knorz MC, Alió JL, et al.Internal aberrations and optical quality after femtosecond laser anterior capsulotomy in cataract surgery. J Refract Surg. 2011; 27(10):711–716.10.3928/1081597X-20110913-01

    LinkGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×