Skip to main content
Journal of Refractive Surgery, 2012;28(9):650–655
Published Online:https://doi.org/10.3928/1081597X-20120815-08Cited by:18

Abstract

PURPOSE:

To quantify the current accuracy limits of ray tracing for intraocular lens (IOL) calculations, compare results for spherical vs aspheric IOLs, and determine the value of using crystalline lens thickness in IOL calculations.

METHODS:

Of 591 eyes, 363 eyes were implanted with spherical IOLs (320 SA60AT [Alcon Laboratories Inc] and 43 Y-60H [Hoya Corp]) and 228 eyes had aspheric, aberration-correcting IOLs (57 SN60WF [Alcon Laboratories Inc], 112 Tecnis ZCB00 [Abbott Medical Optics], 21 CTAsphina404 [Carl Zeiss Meditec], and 38 iMics1 [Hoya Corp]), all calculated with OKULIX ray tracing (Tedics), based on Lenstar (Haag-Streit) measurements of axial length, corneal radii, and position and thickness of the crystalline lens. The measure of accuracy was the prediction error, ie, the difference between calculated refraction and manifest refraction (spherical equivalent) 1 month after surgery calculated as mean absolute error (MAE).

RESULTS:

The prediction error with aspheric IOLs was lower than that with spherical IOLs (MAE 0.27 vs 0.36 D) and was lower for patients with corrected distance visual acuity (CDVA) ⩾1.0 compared to CDVA <1.0 (MAE 0.26 vs 0.38 D). For aspheric IOLs and CDVA ⩾1.0, MAE differed by a factor of two compared to spherical IOLs and CDVA <1.0 (MAE 0.21 vs 0.42 D). Taking the crystalline lens position and thickness into account improved the prediction error by ∼9% overall (MAE 0.33 vs 0.36 D) and was most beneficial in patients with aspheric lenses and CDVA ⩾1.0 (MAE improved from 0.26 to 0.21 D). All differences between the investigated subgroups were statistically significant (P<.05).

CONCLUSIONS:

Ray tracing for IOL calculation is particularly beneficial with aspheric IOLs and in eyes with good (20/20 or better) postoperative visual acuity.

  • 1.Preussner PR, Olsen T, Hoffmann P, Findl O. Intraocular lens calculation accuracy limits in normal eyes. J Cataract Refract Surg. 2008; 34(5):802–808.10.1016/j.jcrs.2008.01.015

    > Crossref MedlineGoogle Scholar
  • 2.Holladay JT, Prager CT, Chandler TY, Musgrove KH, Lewis JW, Ruiz RS. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg. 1988; 14(1):17–24.

    > Crossref MedlineGoogle Scholar
  • 3.Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg. 1990; 16(3):333–340. Erratum in J Cataract Refract Surg. 1990;16(4):528.

    > Crossref MedlineGoogle Scholar
  • 4.Hoffer KJ. The Hoffer-Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993; 19(6):700–712.

    > Crossref MedlineGoogle Scholar
  • 5.Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000; 238(9):765–773.10.1007/s004170000188

    > Crossref MedlineGoogle Scholar
  • 6.Preussner PR, Hoffmann P, Petermeier K. Comparison between ray tracing and IOL calculation formulae of the 3rd generation (German). Klin Monatsbl Augenheilk. 2009; 226(2):83–89.

    > MedlineGoogle Scholar
  • 7.Rabsilber TM, Reuland AJ, Holzer MP, Auffarth GU. Intraocular lens power calculation using ray tracing following excimer laser surgery. Eye. 2007; 21(6):697–701.10.1038/sj.eye.6702300

    > Crossref MedlineGoogle Scholar
  • 8.Preussner PR, Wahl J. Consistent numerical calculation of optics of the pseudophakic eye [German]. Ophthalmologe. 2000; 97(2):126–141.

    > MedlineGoogle Scholar
  • 9.Preussner PR, Wahl J, Lahdo H, Dick B, Findl O. Raytracing for intraocular lens calculation. J Cataract Refract Surg. 2002; 28(8):1412–1419.10.1016/S0886-3350(01)01346-3

    > Crossref MedlineGoogle Scholar
  • 10.Kriechbaum K, Findl O, Preussner PR, Köppl C, Wahl J, Drexler W. Determining postoperative anterior chamber depth. J Cataract Refract Surg. 2003; 29(11):2122–2126.10.1016/S0886-3350(03)00414-0

    > Crossref MedlineGoogle Scholar
  • 11.Preussner PR, Wahl J, Weitzel D, Berthold S, Kriechbaum K, Findl O. Predicting postoperative intraocular lens position and refraction. J Cataract Refract Surg. 2004; 30(10):2077–2083.10.1016/j.jcrs.2004.07.004

    > Crossref MedlineGoogle Scholar
  • 12.Preussner PR, Wahl J, Weitzel D. Topography-based intraocular lens power selection. J Cataract Refract Surg. 2005; 31(3):525–533.10.1016/j.jcrs.2004.09.016

    > Crossref MedlineGoogle Scholar
  • 13.Preussner PR. Consistent IOL calculation in normal and odd eyes with the raytracing program OKULIX. In: , Garg A, Hoyos JE, Dementiev D, eds. Mastering the Techniques of IOL Power Calculations. New Delhi, India: Jaypee Brothers Medical Publishers Ltd; 2005:179–188.

    > Google Scholar
  • 14.Holladay JT. Standardizing constants for ultrasonic biometry, keratometry and intraocular lens power calculations. J Cataract Refract Surg. 1997; 23(9):1356–1370.

    > Crossref MedlineGoogle Scholar
  • 15.Korynta J. Importance of individualizing the formula for improving the accuracy of calculating emmetropia in intraocular lenses before cataract surgery [Czech]. Cesk Slov Oftalmol. 1995; 51(1):45–50.

    > MedlineGoogle Scholar
  • 16.Liou HL, Brennan NA. Anatomically accurate, finite model eye for optical modeling. J Opt Soc Am A Opt Image Sci Vis. 1997; 14(8):1684–169510.1364/JOSAA.14.001684

    > Crossref MedlineGoogle Scholar
  • 17.Lam S. Comparison of age-derived lens thickness to optically measured lens thickness in IOL power calculation: a clinical study. J Refract Surg. 2012; 28(2):154–155.10.3928/1081597X-20111209-01

    > LinkGoogle Scholar
  • 18.Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 2008; 34(3):368–376.10.1016/j.jcrs.2007.10.031

    > Crossref MedlineGoogle Scholar
  • 19.Aristodemou P, Cartwright NE, Sparrow JM, Johnston JM. First eye prediction error improves second eye refractive outcome results in 2129 patients after bilateral sequential cataract surgery. Ophthalmology. 2011; 118(9):1701–1709.10.1016/j.ophtha.2011.05.010

    > Crossref MedlineGoogle Scholar
  • 20.Olsen T. Use of fellow eye data in the calculation of intraocular lens power for the second eye. Ophthalmology. 2011; 118(9):1710–1716.10.1016/j.ophtha.2011.04.030

    > Crossref MedlineGoogle Scholar
  • 21.Jansonius NM. Spherical aberration and other higher-order aberrations in the human eye: from summary wave-front analysis data to optical variables relevant to visual perception. J Opt Soc Am A Opt Image Sci Vis. 2010; 27(5):941–950.10.1364/JOSAA.27.000941

    > Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×