Skip to main content
Journal of Refractive Surgery, 2014;30(3):154–158
Published Online: by:35



To evaluate and compare the effects of femtosecond laser-assisted anterior capsulotomy and manual anterior capsulorhexis on posterior capsule opacification (PCO) development.


Femtosecond laser-assisted anterior capsulotomy was performed in 40 eyes of 40 patients (FS group) and manual anterior capsulorhexis was performed in 39 eyes of 39 patients (CCC group). An AcrySof one-piece hydrophobic acrylic intraocular lens (Alcon Laboratories, Inc., Fort Worth, TX) was implanted in all eyes. The PCO level was measured using Open-Access Systematic Capsule Assessment (OSCA) software 18 to 26 months after surgery. Postoperative intraocular lens position (ie, tilt and decentration) was measured using Scheimpflug images (Pentacam; Oculus Optikgeräte GmbH, Wetzlar, Germany).


There was no statistically significant difference in age, axial length, and follow-up time between the two groups (P > .05). Vertical tilt, horizontal and total decentration of intraocular lenses, and PCO proved to be significantly higher in the CCC group (P = .03, .04, .03, and .01, respectively). After adjusting for axial length and follow-up time, manual anterior capsulorhexis was found to be a significant predictor of higher PCO scores in the multivariable regression model (β: 0.33; 95% CI: 0.01 to 0.65; P = .04). Vertical tilt affected PCO scores after adjusting for axial length and follow-up time (β: 0.07; 95% CI: 0.01 to 0.12; P = .02). No capsulotomies were performed during follow-up in either group.


Femtosecond laser-assisted anterior capsulotomy proved to be a safe procedure for postoperative PCO rates. Due to better intraocular lens position, femtosecond laser-assisted anterior capsulotomy resulted in slightly decreased PCO scores; however, evaluating its clinical significance requires further studies.

[J Refract Surg. 2014;30(3):154–158.]

  • 1.Schaumberg DA, Dana MR, Christen WG, Glynn RJ. A systematic overview of the incidence of posterior capsule opacification. Ophthalmology. 1998; 105:1213–1221.10.1016/S0161-6420(98)97023-3

    > Crossref MedlineGoogle Scholar
  • 2.Nishi O, Nishi K, Sakanishi K. Inhibition of migrating lens epithelial cells at the capsular bend created by the rectangular optic edge of a posterior chamber intraocular lens. Ophthalmic Surg Lasers. 1998; 29:587–594.

    > LinkGoogle Scholar
  • 3.Ravalico G, Tognetto D, Palomba M, Busatto P, Baccara F. Capsulorhexis size and posterior capsule opacification. J Cataract Refract Surg. 1996; 22:98–103.10.1016/S0886-3350(96)80277-X

    > Crossref MedlineGoogle Scholar
  • 4.Kránitz K, Miháltz K, Sándor GL, Takacs A, Knorz MC, Nagy ZZ. Intraocular lens tilt and decentration measured by Scheimpflug camera following manual or femtosecond laser created continuous circular capsulotomy. J Refract Surg. 2012; 28:259–263.10.3928/1081597X-20120309-01

    > LinkGoogle Scholar
  • 5.Smith SR, Daynes T, Hinckley M, Wallin TR, Olson RJ. The effect of lens edge design versus anterior capsule overlap on posterior capsule opacification. Am J Ophthalmol. 2004; 138:521–526.10.1016/j.ajo.2004.04.028

    > Crossref MedlineGoogle Scholar
  • 6.Nagy Z, Takacs A, Filkorn T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg. 2009; 25:1053–1060.10.3928/1081597X-20091117-04

    > LinkGoogle Scholar
  • 7.Kránitz K, Takacs A, Miháltz K, Kovács I, Knorz MC, Nagy ZZ. Femtosecond laser capsulotomy and manual continuous curvilinear capsulorrhexis parameters and their effects on intraocular lens centration. J Refract Surg. 2011; 27:558–563.10.3928/1081597X-20110623-03

    > LinkGoogle Scholar
  • 8.Aslam TM, Patton N, Rose CJ. OSCA: a comprehensive open-access system of analysis of posterior capsular opacification. BMC Ophthalmol. 2006; 6:30.10.1186/1471-2415-6-30

    > Crossref MedlineGoogle Scholar
  • Castro A, Rosales P, Marcos S. Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study. J Cataract Refract Surg. 2007; 33:418–429.10.1016/j.jcrs.2006.10.054

    > Crossref MedlineGoogle Scholar
  • 10.Burq MA, Taqui AM. Frequency of retinal detachment and other complications after neodymium:YAG laser capsulotomy. J Pak Med Assoc. 2008; 58:550–552.

    > MedlineGoogle Scholar
  • 11.Hollick EJ, Spalton DJ, Ursell PG, et al.The effect of PMMA, silicone, and polyacrylic lenses on posterior capsule opacification 3 years after surgery. Ophthalmology. 1998; 106:49–54.10.1016/S0161-6420(99)90047-7

    > CrossrefGoogle Scholar
  • 12.Schmidbauer JM, Escobar-Gomez M, Apple DJ, Peng Q, Arthur SN, Vargas LG. Effect of haptic angulation on posterior capsule opacification in modern foldable lenses with a square, truncated optic edge. J Cataract Refract Surg. 2002; 28:1251–1255.10.1016/S0886-3350(02)01214-2

    > Crossref MedlineGoogle Scholar
  • 13.Meacock WR, Spalton DJ, Boyce JF, Jose RM. Effect of optic size on posterior capsule opacification: 5.5mm versus 6.0mm AcrySof intraocular lenses. J Cataract Refract Surg. 2001; 27:1194–1198.10.1016/S0886-3350(01)00855-0

    > Crossref MedlineGoogle Scholar
  • 14.Zhao Y, Li J, Lu W, et al.Capsular adhesion to intraocular lens in highly myopic eyes evaluated in vivo using ultralong-scan depth optical coherence tomography. Am J Ophthalmol. 2013; 155:484–491.10.1016/j.ajo.2012.08.019

    > Crossref MedlineGoogle Scholar
  • 15.Nagy ZZ, Kránitz K, Takacs AI, Miháltz K, Kovács I, Knorz MC. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J Refract Surg. 2011; 27:564–569.10.3928/1081597X-20110607-01

    > LinkGoogle Scholar
  • 16.Dardenne MU, Gerten GJ, Kokkas K, Kermani O. Retrospective study of retinal detachment following neodymium: YAG laser posterior capsulotomy. J Cataract Refract Surg. 1989; 15:676–680.10.1016/S0886-3350(89)80036-7

    > Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.