Skip to main content
Journal of Refractive Surgery, 2015;31(8):524–530
Published Online:https://doi.org/10.3928/1081597X-20150727-02Cited by:20

Abstract

PURPOSE:

To evaluate intraocular lens (IOL) axial movements and refractive changes during a 6-month follow-up period after femtosecond laser-assisted cataract surgery and conventional cataract surgery, investigate the influence of capsulorhexis features on postoperative IOL axial changes, and assess the prediction error for both techniques.

METHODS:

Eighty eyes of 80 candidates for cataract extraction were randomized into two groups: femtosecond laser (40 eyes) and manual (40 eyes).

RESULTS:

The overall anterior chamber depth variation was significantly lower in the femtosecond laser group compared to the manual group during follow-up (P < .001). At 30 and 180 days postoperatively, the mean spherical equivalent showed a hyperopic shift (0.09 ± 0.28 diopters [D]) in the femtosecond laser group and a myopic shift in the manual group (−0.25 ± 0.18 D). Median absolute error was not significantly different between the two groups with standard formulas ranging between 0.29 and 0.64 (Hoffer Q) in the femtosecond laser group and between 0.24 (SRK-T) and 0.55 D (Hoffer Q) in the manual group. There was a significant lower deviation from intended versus achieved capsulotomy/capsulorhexis area in the femtosecond laser group (P < .001) compared to the manual group. The femtosecond laser group showed better IOL centration compared to the manual group at all time periods (P < .001).

CONCLUSIONS:

Femtosecond laser-assisted cataract surgery was related to a lower overall variability of anterior chamber depth compared to conventional cataract surgery with more stable postoperative refraction. The two techniques did not show significant differences of prediction error.

[J Refract Surg. 2015;31(8):524–530.]

  • 1.Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 2008; 34:368–37610.1016/j.jcrs.2007.10.031

    > Crossref MedlineGoogle Scholar
  • 2.Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007; 85:472–485.10.1111/j.1755-3768.2007.00879.x

    > Crossref MedlineGoogle Scholar
  • 3.Haigis W. Challenges and approaches in modern biometry and IOL calculation. Saudi J Ophthalmol. 2012; 26:7–12.10.1016/j.sjopt.2011.11.007

    > Crossref MedlineGoogle Scholar
  • 4.Lee AC, Qazi MA, Pepose JS. Biometry and intraocular lens power calculation. Curr Opin Ophthalmol. 2008; 19:13–17.10.1097/ICU.0b013e3282f1c5ad

    > Crossref MedlineGoogle Scholar
  • 5.Savini G, Barboni P, Ducoli P, Borrelli E, Hoffer KJ. Influence of intraocular lens haptic design on refractive error. J Cataract Refract Surg. 2014; 40:1473–1478.10.1016/j.jcrs.2013.12.018

    > Crossref MedlineGoogle Scholar
  • 6.Eom Y, Kang SY, Song JS, Kim HM. Comparison of the actual amount of axial movement of 3 aspheric intraocular lenses using anterior segment optical coherence tomography. J Cataract Refract Surg. 2013; 39:1528–1533.10.1016/j.jcrs.2013.04.040

    > Crossref MedlineGoogle Scholar
  • 7.Nejima R, Miyai T, Kataoka Y, et al.Prospective intrapatient comparison of 6.0-millimeter optic single-piece and 3-piece hydrophobic acrylic foldable intraocular lenses. Ophthalmology. 2006; 113:585–590.10.1016/j.ophtha.2005.10.064

    > Crossref MedlineGoogle Scholar
  • 8.Mastropasqua L, Toto L, Mattei PA, et al.Optical coherence tomography and 3-dimensional confocal structured imaging system-guided femtosecond laser capsulotomy versus manual continuous curvilinear capsulorhexis. J Cataract Refract Surg. 2014; 40:2035–2043.10.1016/j.jcrs.2014.05.032

    > Crossref MedlineGoogle Scholar
  • 9.Kovács I, Kránitz K, Sándor GL, et al.The effect of femtosecond laser capsulotomy on the development of posterior capsule opacification. J Refract Surg. 2014; 30:154–158.10.3928/1081597X-20140217-01

    > LinkGoogle Scholar
  • 10.Mastropasqua L, Toto L, Mattei PA, et al.Optical coherence tomography and 3-dimensional confocal structured imaging system-guided femtosecond laser capsulotomy versus manual continuous curvilinear capsulorhexis. J Cataract Refract Surg. 2014; 40:2035–2043.10.1016/j.jcrs.2014.05.032

    > Crossref MedlineGoogle Scholar
  • 11.Mastropasqua L, Toto L, Calienno R, et al.Scanning electron microscopy evaluation of capsulorhexis in femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. 2013; 39:1581–1586.10.1016/j.jcrs.2013.06.016

    > Crossref MedlineGoogle Scholar
  • 12.Alió JL, Abdou AA, Puente AA, Zato MA, Nagy Z. Femtosecond laser cataract surgery: updates on technologies and outcomes. J Refract Surg. 2014; 30:420–427.10.3928/1081597X-20140516-01

    > LinkGoogle Scholar
  • 13.Nagy ZZ, Kránitz K, Takacs AI, Miháltz K, Kovács I, Knorz MC. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J Refract Surg. 2011; 27:564–569.10.3928/1081597X-20110607-01

    > LinkGoogle Scholar
  • 14.Filkorn T, Kovács I, Takács A, Horváth E, Knorz MC, Nagy ZZ. Comparison of IOL power calculation and refractive outcome after laser refractive cataract surgery with a femtosecond laser versus conventional phacoemulsification. J Refract Surg. 2012; 28:540–544.10.3928/1081597X-20120703-04

    > LinkGoogle Scholar
  • 15.Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993; 19:700–712.10.1016/S0886-3350(13)80338-0

    > Crossref MedlineGoogle Scholar
  • 16.Holladay JT, Prager TC, Chandler TY, Musgrove KH, Lewis JW, Ruiz RS. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg. 1988; 14:17–24.10.1016/S0886-3350(88)80059-2

    > Crossref MedlineGoogle Scholar
  • 17.Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens power calculation formula. J Cataract Refract Surg. 1990; 16:333–340.10.1016/S0886-3350(13)80705-5

    > Crossref MedlineGoogle Scholar
  • 18.Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power. J Cataract Refract Surg. 2000; 26:1233–1237.10.1016/S0886-3350(00)00376-X

    > Crossref MedlineGoogle Scholar
  • 19.Wirtitsch MG, Findl O, Menapace R, et al.Effect of haptic design on change in axial length position after cataract surgery. J Cataract Refract Surg. 2004; 30:45–51.10.1016/S0886-3350(03)00459-0

    > Crossref MedlineGoogle Scholar
  • 20.Lyle WA, Jin GJ. Prospective evaluation of early visual and refractive effects with small clear corneal incision for cataract surgery. J Cataract Refract Surg. 1996; 22:1456–1460.10.1016/S0886-3350(96)80147-7

    > Crossref MedlineGoogle Scholar
  • 21.Masket S, Tennen DG. Astigmatic stabilization of 3.0 mm temporal clear corneal cataract incisions. J Cataract Refract Surg. 1996; 22:1451–1455.10.1016/S0886-3350(96)80146-5

    > Crossref MedlineGoogle Scholar
  • 22.Behrouz MJ, Kheirkhah A, Hashemian H, Nazari R. Anterior segment parameters: comparison of 1-piece and 3-piece acrylic foldable intraocular lenses. J Cataract Refract Surg. 2010; 36:1650–1655.10.1016/j.jcrs.2010.05.013

    > Crossref MedlineGoogle Scholar
  • 23.Petternel V, Menapace R, Findl O, et al.Impact of optic edge design and haptic angulation on postoperative intraocular lens position change. J Cataract Refract Surg. 2004; 30:52–57.10.1016/S0886-3350(03)00556-X

    > Crossref MedlineGoogle Scholar
  • 24.Hoffer KJ. Hoffer barrier ridge concept. J Cataract Refract Surg. 2007; 33:1142–1143.10.1016/j.jcrs.2007.03.054

    > Crossref MedlineGoogle Scholar
  • 25.Hoffer KJ. Five years’ experience with the ridged laser lens implant. In: , Emery JM, Jacobson AC, eds. Current Concepts in Cataract Surgery: Selected Proceedings of the Eighth Biennial Cataract Surgical Congress. Norwalk, CT: Appleton-Century-Crofts; 1984:296–299.

    > Google Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×