Skip to main content
Journal of Refractive Surgery, 2015;31(10):674–682
Cite this articlePublished Online:https://doi.org/10.3928/1081597X-20150928-06Cited by:38

Abstract

PURPOSE:

To evaluate the long-term visual, refractive, and corneal aberrometric outcomes and regression of the achieved correction of hyperopia with a sixth-generation excimer laser.

METHODS:

This retrospective, consecutive, observational case series study comprised 86 eyes of 44 patients who underwent LASIK to correct hyperopia with a postoperative follow-up of 3 years. LASIK procedures were performed using the sixth-generation Amaris excimer laser (Schwind eye-tech-solutions GmbH and Co., Kleinostheim, Germany). Visual acuity, manifest refraction, corneal topography, and aberrometry were evaluated in the follow-up.

RESULTS:

Three years postoperatively, 65 eyes (76%) had an uncorrected distance visual acuity of 20/20 or better. Five eyes (6.2%) lost one or more lines of corrected distance visual acuity. Sixty eyes (70%) had a spherical equivalent within ±0.50 diopters (D). There was regression of 0.47 D between 3 and 36 months postoperatively. Statistically significant differences were found in spherical equivalent between 3 and 36 months (P < .01), but no differences were observed between 12 and 36 months (P = .08). A flattening of 0.16 D was observed between 3 and 36 months after surgery in the mean simulated keratometry. A significant increase of root mean square spherical-like, coma-like, and higher-order aberrations (P < .01) were observed postoperatively. Twenty-five eyes (29%) required re-treatment.

CONCLUSIONS:

Treatment of hyperopia using the sixth-generation Amaris excimer laser provides good results in terms of efficacy, safety, predictability, and visual outcomes after 3 years. The refractive stability shows a significant regression in the first 12 months after surgery with more stable results from 12 months postoperatively.

[J Refract Surg. 2015;31(10):674–681.]

  • 1.Quito CF, Agahan AL, Evangelista RP. Long-term follow-up of laser in situ keratomileusis for hyperopia using a 213 nm wavelength solid-state laser. ISRN Ophthalmol. 2013; 2013:276984.

    > Crossref MedlineGoogle Scholar
  • 2.Pallikaris IG, Papatzanaki ME, Stathi EZ, Frenschock O, Georgiadis A. Laser in situ keratomileusis. Lasers Surg Med. 1990; 10:463–468.10.1002/lsm.1900100511

    > Crossref MedlineGoogle Scholar
  • 3.Alió JL, El Aswad A, Vega-Estrada A, Javaloy J. Laser in situ keratomileusis for high hyperopia (> 5.0 diopters) using optimized aspheric profiles: efficacy and safety. J Cataract Refract Surg. 2013; 39:519–527.10.1016/j.jcrs.2012.10.045

    > Crossref MedlineGoogle Scholar
  • 4.Dausch D, Klein R, Schröder E, Niemczyk S. Photorefractive keratectomy for hyperopic and mixed astigmatism. J Refract Surg. 1996; 12:684–692.

    > LinkGoogle Scholar
  • 5.Ditzen K, Huschka H, Pieger S. Laser in situ keratomileusis for hyperopia. J Cataract Refract Surg. 1998; 24:42–47.10.1016/S0886-3350(98)80073-4

    > Crossref MedlineGoogle Scholar
  • 6.Ditzen K, Fiedler K, Pieger S. Laser in situ keratomileusis for hyperopia and hyperopic astigmatism using the Meditec MEL 70 spot scanner. J Refract Surg. 2002; 18:430–434.

    > LinkGoogle Scholar
  • 7.Varley GA, Huang D, Rapuano CJ, et al.LASIK for hyperopia, hyperopic astigmatism, and mixed astigmatism; a report by the American Academy of Ophthalmology. Ophthalmology. 2004; 111:1604–1617.10.1016/j.ophtha.2004.05.016

    > Crossref MedlineGoogle Scholar
  • 8.Spadea L, Sabetti L, D’Alessandri L, Balestrazzi E. Photorefractive keratectomy and LASIK for the correction of hyperopia: 2 year follow-up. J Refract Surg. 2006; 22:131–136.

    > LinkGoogle Scholar
  • 9.Alió J, Galal A, Ayala MJ, Artola A. Hyperopic LASIK with Esiris/Schwind technology. J Refract Surg. 2006; 22:772–781.

    > LinkGoogle Scholar
  • 10.Lukenda A, Martinovic ZK, Kalauz M. Excimer laser correction of hyperopia, hyperopic and mixed astigmatism: past, present, and future. Acta Clin Croat. 2012; 51:299–304.

    > MedlineGoogle Scholar
  • 11.Arba-Mosquera S, de Ortueta D. Analysis of optimized profiles for “aberration free” refractive surgery. Ophthalmic Physiol Opt. 2009; 29:535–548.10.1111/j.1475-1313.2009.00670.x

    > Crossref MedlineGoogle Scholar
  • 12.Alió JL, Vega-Estrada A, Piñero DP. Laser-assisted in situ keratomileusis in high levels of myopia with the Amaris excimer laser using optimized aspherical profiles. Am J Ophthalmol. 2011; 152:954–963.10.1016/j.ajo.2011.05.009

    > Crossref MedlineGoogle Scholar
  • 13.Alió JL, Pachkoria K, El Aswad A, Plaza-Puche AB. Laser-assisted in situ keratomileusis in high mixed astigmatism with optimized, fast-repetition and cyclotorsion control excimer laser. Am J Ophthalmol. 2013; 155;829–836.10.1016/j.ajo.2012.11.027

    > Crossref MedlineGoogle Scholar
  • 14.Vega-Estrada A, Alió JL, Arga Mosquera S, Moreno LJ. Corneal higher order aberrations after LASIK for high myopia with a fast repetition rate excimer laser, optimized ablation profile, and femtosecond laser-assisted flap. J Refract Surg. 2012; 28:689–696.10.3928/1081597X-20120921-03

    > LinkGoogle Scholar
  • 15.Alió JL, Plaza-Puche AB, Martinez LM, Torky M, Brenner LF. Laser in situ keratomileusis using optimized aspheric profiles and cyclotorsion control to treat compound myopic astigmatism with high cylinder. J Cataract Refract Surg. 2013; 39:28–35.10.1016/j.jcrs.2012.07.037

    > Crossref MedlineGoogle Scholar
  • 16.Brunsmann U, Sauer U, Dressler K, Trienfenbach N, Arba Mosquera S. Minimisation of the thermal load of the ablation in high-speed laser corneal refractive surgery: the ‘intelligent thermal effect control’ of the AMARIS platform. J Mod Opt. 2010; 57:466–479.10.1080/09500341003710492

    > CrossrefGoogle Scholar
  • 17.Waring GO, Reinstein DZ, Dupps WJ, et al.Standardized graphs and terms for refractive surgery results. J Refract Surg. 2011; 27:7–9.

    > LinkGoogle Scholar
  • 18.Desai RU, Jain A, Manche EE. Long-term follow-up of hyperopic laser in situ keratomileusis correction using the Star S2 excimer laser. J Cataract Refract Surg. 2008; 34:232–237.10.1016/j.jcrs.2007.09.019

    > Crossref MedlineGoogle Scholar
  • 19.Jaycock PD, O’Brart DPS, Rajan MS, Marshall J. 5-year follow-up of LASIK for hyperopia. Ophthalmology. 2005; 112:191–199.10.1016/j.ophtha.2004.09.017

    > Crossref MedlineGoogle Scholar
  • 20.Zadok D, Raifkup F, Landau D, Frucht-Pery J. Long-term evaluation of hyperopic laser in situ keratomileusis. J Cataract Refract Surg. 2003; 29:2181–2188.10.1016/S0886-3350(03)00416-4

    > Crossref MedlineGoogle Scholar
  • 21.Esquenazi S, Mendoza A. Two-year follow-up of laser in situ keratomileusis for hyperopia. J Refract Surg. 1999; 15:648–652.

    > LinkGoogle Scholar
  • 22.Esquenazi S. Five-year follow-up of laser in situ keratomileusis for hyperopia using the Technolas Keracor 117C excimer laser. J Refract Surg. 2004; 20:356–363.

    > LinkGoogle Scholar
  • 23.Attebo K, Ivers RQ, Mitchell P. Refractive errors in an older population: the Blue Mountains Eye Study. Ophthalmology. 1999; 106:1066–1072.10.1016/S0161-6420(99)90251-8

    > Crossref MedlineGoogle Scholar
  • 24.Saunders H. A longitudinal study of the age-dependence of human ocular refraction: I. Age-dependent changes in the equivalent sphere. Ophthalmic Physiol Opt. 1986; 6:39–46.

    > MedlineGoogle Scholar
  • 25.Lee KE, Klein BE, Klein R. Changes in refractive error over a 5-year interval in the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 1999; 40:1645–1649.

    > MedlineGoogle Scholar
  • 26.Guzowski M, Wang JJ, Rochtchina E, Rose KA, Mitchell P. Five-year refractive changes in an older population the Blue Mountains Eye Study. Ophthalmology. 2003; 110:1364–1370.10.1016/S0161-6420(03)00465-2

    > Crossref MedlineGoogle Scholar
  • 27.De Ortueta D, Arba Mosquera S. Topographic stability after hyperopic LASIK. J Refract Surg. 2010; 26:547–554.10.3928/1081597X-20100225-01

    > LinkGoogle Scholar
  • 28.Nanba A, Amano S, Oshika T, et al.Corneal higher order wavefront aberrations after hyperopic laser in situ keratomileusis. J Refract Surg. 2005; 21:46–51.

    > LinkGoogle Scholar
  • 29.Alió JL, Piñero DP, Espinosa MJA, Corral MJG. Corneal aberrations and objective visual quality after hyperopic laser in situ keratomileusis using the Esiris excimer laser. J Cataract Refract Surg. 2008; 34:398–406.10.1016/j.jcrs.2007.09.045

    > Crossref MedlineGoogle Scholar
  • 30.Gatinel D, Malet J, Hoang-Xuan T, Azar D. Corneal asphericity change after excimer laser hyperopic surgery: theoretical effects on corneal profiles and corresponding Zernike expansions. Invest Ophthalmol Vis Sci. 2004; 45:1349–1359.10.1167/iovs.03-0753

    > Crossref MedlineGoogle Scholar
  • 31.Chen CC, Izadshenas A, Rana MAA, Azar DT. Corneal asphericity after hyperopic laser in situ keratomileusis. J Cataract Refract Surg. 2002; 28:1539–1545.10.1016/S0886-3350(02)01541-9

    > Crossref MedlineGoogle Scholar
  • 32.De Ortueta D, Arba-Mosquera S, Baatz H. Topographic changes after hyperopic LASIK with the SCHWIND ESIRIS laser platform. J Refract Surg. 2008; 24:137–144.

    > LinkGoogle Scholar
  • 33.Bottos KM, Leite MT, Aventura-Isidro M, et al.Corneal asphericity and spherical aberrations after refractive surgery. J Cataract Refract Surg. 2011; 37:1109–1115. Erratum in: J Cataract Refract Surg. 2011;37:1742.10.1016/j.jcrs.2010.12.058

    > Crossref MedlineGoogle Scholar
  • 34.de Ortueta D, Schreyger FD. Centration on the cornea vertex normal during hyperopic refractive photoablation using video-keratoscopy. J Refract Surg. 2007; 23:198–200.

    > LinkGoogle Scholar
  • 35.Reinstein DZ, Gobbe M, Archer TJ. Coaxially sighted corneal light reflex versus entrance pupil center centration of moderate to high hyperopic corneal ablations in eyes with small and large angle kappa. J Refract Surg. 2013; 29:518–525.10.3928/1081597X-20130719-08

    > LinkGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×