Skip to main content
Journal of Refractive Surgery, 2017;33(2):116–127
Published Online:https://doi.org/10.3928/1081597X-20161202-01Cited by:11

Abstract

PURPOSE:

To review refractive regression and current therapeutic options for patients who have residual refractive error after LASIK.

METHODS:

An extensive literature search using PubMed was performed for terms such as “LASIK,” “PRK,” “enhancement,” “overcorrection,” “undercorrection,” “re-lift,” “mini-flap,” and related terms.

RESULTS:

The presence of residual refractive error following LASIK is a challenging situation. After excluding anatomical causes (eg, ocular surface disease, cataract, and macular pathology) and intraoperative flap complications, evaluation of the residual stromal bed must be performed. Depending on the length of time since primary LASIK, procedures such as flap re-lift, flap re-cut, and surface ablation may be performed.

CONCLUSIONS:

Residual refractive errors can be seen after LASIK surgery and may benefit from an enhancement procedure. Different options are available for enhancement, each requiring proper evaluation and an analytical approach to make the procedure safe and effective.

[J Refract Surg. 2017;33(2):116–127.]

  • 1.Igarashi A, Kamiya K, Shimizu K, Komatsu M. Time course of refractive and corneal astigmatism after laser in situ keratomileusis for moderate to high astigmatism. J Cataract Refract Surg. 2012; 38:1408–1413.10.1016/j.jcrs.2012.03.030

    > Crossref MedlineGoogle Scholar
  • 2.Wilson SE, Santhiago MR. Flaporhexis: rapid and effective technique to limit epithelial ingrowth after LASIK enhancement. J Cataract Refract Surg. 2012; 38:2–4.10.1016/j.jcrs.2011.10.015

    > Crossref MedlineGoogle Scholar
  • 3.Alió JL, Muftuoglu O, Ortiz D, et al.Ten-year follow-up of laser in situ keratomileusis for high myopia. Am J Ophthalmol. 2008; 145:55–64.10.1016/j.ajo.2007.08.035

    > Crossref MedlineGoogle Scholar
  • 4.Yuen LH, Chan WK, Koh J, Mehta JS, Tan DTSingLasik Research Group. A 10-year prospective audit of LASIK outcomes for myopia in 37 932 eyes at a single institution in Asia. Ophthalmology. 2010; 117:1236–1244.10.1016/j.ophtha.2009.10.042

    > Crossref MedlineGoogle Scholar
  • 5.Biebesheimer JB, Kang TS, Huang CY, Yu F, Hamilton DR. Development of an advanced nomogram for myopic astigmatic wavefront-guided laser in situ keratomileusis (LASIK). Ophthalmic Surg Lasers Imaging. 2011; 42:241–247.10.3928/15428877-20110303-01

    > LinkGoogle Scholar
  • 6.Christiansen SM, Mifflin MD, Edmonds JN, Simpson RG, Moshirfar M. Astigmatism induced by conventional spherical ablation after PRK and LASIK in myopia with astigmatism <1.00. Clin Ophthalmol. 2012; 6:2109–2117.10.2147/OPTH.S37489

    > Crossref MedlineGoogle Scholar
  • 7.Sharma N, Balasubramanya R, Sinha R, Titiyal JS, Vajpayee RB. Retreatment of LASIK. J Refract Surg. 2006; 22:396–401.

    > LinkGoogle Scholar
  • 8.Quito CF, Agahan AL, Evangelista RP. Long-term followup of laser in situ keratomileusis for hyperopia using a 213 nm wavelength solid-state laser. ISRN Ophthalmol. 2013; 2013:1–7.10.1155/2013/276984

    > CrossrefGoogle Scholar
  • 9.Ivarsen A, Fledelius W, Hjortdal JØ. Three-year changes in epithelial and stromal thickness after PRK or LASIK for high myopia. Invest Ophthalmol Vis Sci. 2009; 50:2061–2066.10.1167/iovs.08-2853

    > Crossref MedlineGoogle Scholar
  • 10.El-Awady HE, Ghanem AA, Gad MA. Evaluation of the role of timolol 0.1% gel in myopic regression after laser in situ keratomileusis. Saudi J Ophthalmol. 2010; 24:81–86.10.1016/j.sjopt.2010.03.001

    > Crossref MedlineGoogle Scholar
  • 11.Shojaei A, Eslani M, Vali Y, Mansouri M, Dadman N, Yaseri M. Effect of timolol on refractive outcomes in eyes with myopic regression after laser in situ keratomileusis: a prospective randomized clinical trial. Am J Ophthalmol. 2012; 154:790–798.10.1016/j.ajo.2012.05.013

    > Crossref MedlineGoogle Scholar
  • 12.Reinstein DZ, Srivannaboon S, Gobbe M, et al.Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg. 2009; 25:444–450.10.3928/1081597X-20090422-07

    > LinkGoogle Scholar
  • 13.Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness after hyperopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2010; 26:555–564.10.3928/1081597X-20091105-02

    > LinkGoogle Scholar
  • 14.Cho YK, Huang W, Nishimura E. Myopic refractive shift represents dense nuclear sclerosis and thin lens in lenticular myopia. Clin Exp Optom. 2013; 96:479–485.10.1111/cxo.12064

    > Crossref MedlineGoogle Scholar
  • 15.Machan CM, Hrynchak PK, Irving EL. Age-related cataract is associated with type 2 diabetes and statin use. Optom Vis Sci. 2012; 89:1165–1171.10.1097/OPX.0b013e3182644cd1

    > Crossref MedlineGoogle Scholar
  • 16.Tsuneyoshi Y, Negishi K, Saiki M, Toda I, Tsubota K. Apparent progression of presbyopia after laser in situ keratomileusis in patients with early presbyopia. Am J Ophthalmol. 2014; 158:286–292.10.1016/j.ajo.2014.05.006

    > Crossref MedlineGoogle Scholar
  • 17.Randleman JB, White AJ, Lynn MJ, Hu MH, Stulting RD. Incidence, outcomes, and risk factors for retreatment after wavefront-optimized ablations with PRK and LASIK. J Refract Surg. 2009; 25:273–276.

    > LinkGoogle Scholar
  • 18.Bragheeth MA, Fares U, Dua HS. Re-treatment after laser in situ keratomileusis for correction of myopia and myopic astigmatism. Br J Ophthalmol. 2008; 92:1506–1510.10.1136/bjo.2008.143636

    > Crossref MedlineGoogle Scholar
  • 19.Alió JL, Muftuoglu O, Ortiz D, et al.Ten-year follow-up of laser in situ keratomileusis for myopia of up to −10 diopters. Am J Ophthalmol. 2008; 145:46–54.10.1016/j.ajo.2007.09.010

    > Crossref MedlineGoogle Scholar
  • 20.Rosenfeld SI. Evaluation and management of post-LASIK dry eye syndrome. Int Ophthalmol Clin. 2010; 50:191–199.10.1097/IIO.0b013e3181e2469b

    > Crossref MedlineGoogle Scholar
  • 21.Ho M, Liu DT, Chan VC, Lam DS. Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology. 2013; 120:1909–1914.10.1016/j.ophtha.2013.02.005

    > Crossref MedlineGoogle Scholar
  • 22.Nerad JA, Blanton CL, Rajpal RK, et al.Refractive management/ intervention. In: , Nerad JA, Blanton CL, Rajpal RK, et al., eds. Practicing Ophthalmologists Curriculum. San Francisco: American Academy of Ophthalmology; 2014–2016:1–205.

    > Google Scholar
  • 23.Savini G, Carbonelli M, Barboni P, Hoffer KJ. Repeatability of automatic measurements performed by a dual Scheimpflug analyzer in unoperated and post-refractive surgery eyes. J Cataract Refract Surg. 2011; 37:302–309.10.1016/j.jcrs.2010.07.039

    > Crossref MedlineGoogle Scholar
  • 24.Reinstein DZ, Archer TJ, Gobbe M. Repeatability of intraoperative central corneal and residual stromal thickness measurement using a handheld ultrasound pachymeter. J Cataract Refract Surg. 2012; 38:278–282.10.1016/j.jcrs.2011.08.037

    > Crossref MedlineGoogle Scholar
  • 25.Reinstein DZ, Sutton HFS, Srivannaboon S, Silverman RH, Archer TJ, Coleman DJ. Evaluating microkeratome efficacy by 3D corneal lamellar flap thickness accuracy and reproducibility using Artemis VHF digital ultrasound arc-scanning. J Refract Surg. 2006; 22:431–440.

    > LinkGoogle Scholar
  • 26.Reinstein DZ, Archer TJ, Gobbe M. Comparison of residual stromal bed thickness measurement among very high-frequency digital ultrasound, intraoperative handheld ultrasound, and optical coherence tomography. J Refract Surg. 2012; 28:42–47.10.3928/1081597X-20110825-02

    > LinkGoogle Scholar
  • 27.Santhiago MR, Smadja D, Gomes BF, et al.Association between the percent tissue altered and post laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014; 158:87–95.10.1016/j.ajo.2014.04.002

    > Crossref MedlineGoogle Scholar
  • 28.Reinstein DZ, Archer TJ, Gobbe M, et al.Repeatability of layered corneal pachymetry with the Artemis very high-frequency digital ultrasound arc-scanner. J Refract Surg. 2010; 26:646–659.10.3928/1081597X-20091105-01

    > LinkGoogle Scholar
  • 29.Hong J, Qian T, Yang Y, et al.Corneal epithelial thickness map in long-term soft contact lenses wearers. Optom Vis Sci. 2014; 91:1455–1461.10.1097/OPX.0000000000000410

    > Crossref MedlineGoogle Scholar
  • 30.Tatar MG, Aylin Kantarci F, Yildirim A, et al.Risk factors in post-LASIK corneal ectasia. J Ophthalmol. 2014; 2014:204191.10.1155/2014/204191

    > Crossref MedlineGoogle Scholar
  • 31.Akhtar S, Alkatan H, Kirat O, Almubrad T. Ultrastructural and three-dimensional study of post-LASIK ectasia cornea. Microsc Res Tech. 2014; 77:91–98.10.1002/jemt.22316

    > Crossref MedlineGoogle Scholar
  • 32.Rabinowitz YS, Li X, Canedo ALC, Ambrósio R, Bykhovskaya Y. Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes. J Refract Surg. 2014; 30:80–87.10.3928/1081597X-20140120-02

    > LinkGoogle Scholar
  • 33.Smadja D, Santhiago MR, Mello GR, Krueger RR, Colin J, Touboul D. Influence of the reference surface shape for discriminating between normal corneas, subclinical keratoconus, and keratoconus. J Refract Surg. 2013; 29:274–281.10.3928/1081597X-20130318-07

    > LinkGoogle Scholar
  • 34.Smadja D, Touboul D, Cohen A, et al.Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013; 156:237–246.10.1016/j.ajo.2013.03.034

    > Crossref MedlineGoogle Scholar
  • 35.Martin R, Rachidi H. Stability of posterior corneal elevation one year after myopic laser in situ keratomileusis. Clin Exp Optom. 2012; 95:177–186.10.1111/j.1444-0938.2011.00665.x

    > Crossref MedlineGoogle Scholar
  • 36.Sy ME, Ramirez-Miranda A, Zarei-Ghanavati S, Engle J, Danesh J, Hamilton DR. Comparison of posterior corneal imaging before and after LASIK using dual rotating Scheimpflug and scanning slit-beam corneal tomography systems. J Refract Surg. 2013; 29:96–101.10.3928/1081597X-20130117-03

    > LinkGoogle Scholar
  • 37.Pérez-Escudero A, Dorronsoro C, Sawides L, Remón L, Merayo-Lloves J, Marcos S. Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface. Invest Ophthalmol Vis Sci. 2009; 50:4146–4154.10.1167/iovs.09-3411

    > Crossref MedlineGoogle Scholar
  • 38.Khairat YM, Mohamed YH, Moftah IANO, Fouad NN. Evaluation of corneal changes after myopic LASIK using the Pentacam®. Clin Ophthalmol. 2013; 7:1771–1776.

    > MedlineGoogle Scholar
  • 39.Guilbert E, Saad A, Gatinel D. Unilateral ectasia after LASIK in a patient with abnormal topography but normal tomography. J Refract Surg. 2013; 29:294–296.10.3928/1081597X-20130318-09

    > LinkGoogle Scholar
  • 40.Wilson SE, Santhiago MR. Flaporhexis: rapid and effective technique to limit epithelial ingrowth after LASIK enhancement. J Cataract Refract Surg. 2012; 38:2–4.10.1016/j.jcrs.2011.10.015

    > Crossref MedlineGoogle Scholar
  • 41.Alió JL, Piñero DP, Plaza Puche AB. Corneal wavefront-guided enhancement for high levels of corneal coma aberration after laser in situ keratomileusis. J Cataract Refract Surg. 2008; 34:222–231.10.1016/j.jcrs.2007.09.027

    > Crossref MedlineGoogle Scholar
  • 42.Reinstein DZ, Archer TJ, Gobbe M. Combined corneal topography and corneal wavefront data in the treatment of corneal irregularity and refractive error in LASIK or PRK using the Carl Zeiss Meditec MEL 80 and CRS-Master. J Refract Surg. 2009; 25:503–515.

    > LinkGoogle Scholar
  • 43.Santhiago MR, Smadja D, Zaleski K, Espana EM, Armstrong BK, Wilson SE. Flap relift for retreatment after femtosecond laser-assisted LASIK. J Refract Surg. 2012; 28:482–487.10.3928/1081597X-20120615-02

    > LinkGoogle Scholar
  • 44.Letko E, Price MO, Price FW. Influence of original flap creation method on incidence of epithelial ingrowth after LASIK retreatment. J Refract Surg. 2009; 25:1039–1041.10.3928/1081597X-20090617-13

    > LinkGoogle Scholar
  • 45.Chan CCK, Wachler BSB. Comparison of the effects of LASIK retreatment techniques on epithelial ingrowth rates. Ophthalmology. 2007; 114:640–642.10.1016/j.ophtha.2006.06.062

    > Crossref MedlineGoogle Scholar
  • 46.Mohamed TA, Hoffman RS, Fine IH, Packer M. Post-laser assisted in situ keratomileusis epithelial ingrowth and its relation to pretreatment refractive error. Cornea. 2011; 30:550–552.10.1097/ICO.0b013e3182000ac3

    > Crossref MedlineGoogle Scholar
  • 47.Henry CR, Canto AP, Galor A, Vaddavalli PK, Culberson WW, Yoo SH. Epithelial ingrowth after LASIK: clinical characteristics, risk factors, and visual outcomes in patients requiring flap lift. J Refract Surg. 2012; 28:488–492.10.3928/1081597X-20120604-01

    > LinkGoogle Scholar
  • 48.Vaddavalli PK, Yoo SH. Femtosecond laser in-situ keratomileusis flap configurations. Curr Opin Ophthalmol. 2011; 22:245–250.10.1097/ICU.0b013e3283479ebd

    > Crossref MedlineGoogle Scholar
  • 49.Caster AI, Friess DW, Schwendeman FJ. Incidence of epithelial ingrowth in primary and retreatment laser in situ keratomileusis. J Cataract Refract Surg. 2010; 36:97–101.10.1016/j.jcrs.2009.07.039

    > Crossref MedlineGoogle Scholar
  • 50.Randleman JB, Shah RD. LASIK Interface complications: etiology, management, and outcomes. J Refract Surg. 2012; 28:575–586.10.3928/1081597X-20120722-01

    > LinkGoogle Scholar
  • 51.Rapuano CJ. Management of epithelial ingrowth after laser in situ keratomileusis on a tertiary care cornea service. Cornea. 2010; 29:307–313.10.1097/ICO.0b013e3181b7f3c5

    > Crossref MedlineGoogle Scholar
  • 52.Ayala MJ, Alió JL, Mulet ME, De La Hoz F. Treatment of laser in situ keratomileusis interface epithelial ingrowth with neodymium:yytrium-aluminum-garnet laser. Am J Ophthalmol. 2008; 145:630–634.10.1016/j.ajo.2007.11.022

    > Crossref MedlineGoogle Scholar
  • 53.Yeh DL, Bushley DM, Kim T. Treatment of traumatic LASIK flap dislocation and epithelial ingrowth with fibrin glue. Am J Ophthalmol. 2006; 141:960–962.10.1016/j.ajo.2005.12.001

    > Crossref MedlineGoogle Scholar
  • 54.Srinivasan S, Drake A, Herzig S. Photorefractive keratectomy with 0.02% mitomycin c for treatment of residual refractive errors after LASIK. J Refract Surg. 2008; 24:S64–S67.

    > MedlineGoogle Scholar
  • 55.Goldsberry DH, Epstein RJ, Majmudar PA, et al.Effect of mitomycin C on the corneal endothelium when used for corneal subepithelial haze prophylaxis following photorefractive keratectomy. J Refract Surg. 2007; 23:724–727.

    > LinkGoogle Scholar
  • 56.Zare M, Jafarinasab MR, Feizi S, Zamani M. The effect of mitomycin-c on corneal endothelial cells after photorefractive keratectomy. J Ophthalmic Vis Res. 2011; 6:8–12.

    > MedlineGoogle Scholar
  • 57.Shojaei A, Ramezanzadeh M, Soleyman-Jahi S, Almasi-Nasrabadi M, Rezazadeh P, Eslani M. Short-time mitomycin-c application during photorefractive keratectomy in patients with low myopia. J Cataract Refract Surg. 2013; 39:197–203.10.1016/j.jcrs.2012.09.016

    > Crossref MedlineGoogle Scholar
  • 58.Nassiri N, Farahangiz S, Rahnavardi M, Rahmani L, Nassiri N. Corneal endothelial cell injury induced by mitomycin-C in photorefractive keratectomy: nonrandomized controlled trial. J Cataract Refract Surg. 2008; 34:902–908.10.1016/j.jcrs.2008.03.007

    > Crossref MedlineGoogle Scholar
  • 59.Morales AJ, Zadok D, Mora-Retana R, Martínez-Gama E, Robledo NE, Chayet AS. Intraoperative mitomycin and corneal endothelium after photorefractive keratectomy. Am J Ophthalmol. 2006; 142:400–404.10.1016/j.ajo.2006.04.029

    > Crossref MedlineGoogle Scholar
  • 60.Neira-Zalentein W, Moilanen JA, Tuisku IS, Holopainen JM, Tervo TM. Photorefractive keratectomy retreatment after LASIK. J Refract Surg. 2008; 24:710–712.

    > LinkGoogle Scholar
  • 61.Liu A, Manche EE. Visually significant haze after retreatment with photorefractive keratectomy with mitomycin-C following laser in situ keratomileusis. J Cataract Refract Surg. 2010; 36:1599–1601.10.1016/j.jcrs.2010.06.004

    > Crossref MedlineGoogle Scholar
  • 62.Alió JL, Piñero DP, Plaza Puche AB. Corneal wavefront-guided photorefractive keratectomy in patients with irregular corneas after corneal refractive surgery. J Cataract Refract Surg. 2008; 34:1727–1735.10.1016/j.jcrs.2008.06.025

    > Crossref MedlineGoogle Scholar
  • 63.Toda I, Yamamoto T, Ito M, Hori-Komai Y, Tsubota K. Topography-guided ablation for treatment of patients with irregular astigmatism. J Refract Surg. 2007; 23:118–125.

    > LinkGoogle Scholar
  • 64.Kymionis GD, Portaliou DM, Diakonis VF, et al.Management of post laser in situ keratomileusis ectasia with simultaneous topography guided photorefractive keratectomy and collagen cross-linking. Open Ophthalmol J. 2011; 5:11–13.

    > MedlineGoogle Scholar
  • 65.Beerthuizen JJ, Siebelt E. Surface ablation after laser in situ keratomileusis: retreatment on the flap. J Cataract Refract Surg. 2007; 33:1376–1380.10.1016/j.jcrs.2007.04.024

    > Crossref MedlineGoogle Scholar
  • 66.Cagil N, Aydin B, Ozturk S, Hasiripi H. Effectiveness of laser-assisted subepithelial keratectomy to treat residual refractive errors after laser in situ keratomileusis. J Cataract Refract Surg. 2007; 33:642–647.10.1016/j.jcrs.2007.01.012

    > Crossref MedlineGoogle Scholar
  • 67.Saeed A, O'Doherty M, O'Doherty J, O'Keefe M. Laser-assisted subepithelial keratectomy retreatment after laser in situ keratomileusis. J Cataract Refract Surg. 2008; 34:1736–1741.10.1016/j.jcrs.2008.06.020

    > Crossref MedlineGoogle Scholar
  • 68.Teus MA, Benito-Llopis L. Laser-assisted subepithelial keratectomy with MMC to treat post-LASIK myopic regression. J Cataract Refract Surg. 2007; 33:1674–1675.10.1016/j.jcrs.2007.06.030

    > Crossref MedlineGoogle Scholar
  • 69.Faktorovich EG, Nosova E. Epithelial removal and phototherapeutic keratectomy for residual refractive error following LASIK in eyes with corneal epithelial basement membrane degeneration. J Refract Surg. 2009; 25:723–729.10.3928/1081597X-20090707-07

    > LinkGoogle Scholar
  • 70.Tran DB, Binder PS, Brame CL. LASIK flap revision using the IntraLase femtosecond laser. Int Ophthalmol Clin. 2008; 48:51–63.10.1097/IIO.0b013e31815eae43

    > Crossref MedlineGoogle Scholar
  • 71.Vaddavalli PK, Yoo SH, Diakonis VF, et al.Femtosecond laser-assisted retreatment for residual refractive errors after laser in situ keratomileusis. J Cataract Refract Surg. 2013; 39:1241–1247.10.1016/j.jcrs.2013.03.018

    > Crossref MedlineGoogle Scholar
  • 72.Coskunseven E, Kymionis GD, Grentzelos MA, Portaliou DM, Kolli S, Jonkov MR. Femtosecond LASIK retreatment using side cutting only. J Refract Surg. 2012; 28:37–41.10.3928/1081597X-20110812-01

    > LinkGoogle Scholar
  • 73.Güell JL, Elies D, Gris O, Manero F, Morral M. Femtosecond laser-assisted enhancements after laser in situ keratomileusis. J Cataract Refract Surg. 2011; 37:1928–1931.10.1016/j.jcrs.2011.09.016

    > Crossref MedlineGoogle Scholar
  • 74.Vaddavalli PK, Diakonis VF, Canto AP, et al.Complications of femtosecond laser-assisted re-treatment for residual refractive errors after LASIK. J Refract Surg. 2013; 29:577–580.10.3928/1081597X-20130620-03

    > LinkGoogle Scholar
  • 75.Garcia-Gonzalez M, Teus MA. Creation of a new femtosecond laser-assisted mini-flap to enhance late regression after LASIK. J Refract Surg. 2013; 29:564–568.10.3928/1081597X-20130611-01

    > LinkGoogle Scholar
  • 76.Pineda R, Jain V. Arcuate keratotomy: an option for astigmatism correction after laser in situ keratomileusis. Cornea. 2009; 28:1178–1180.10.1097/ICO.0b013e31819db422

    > Crossref MedlineGoogle Scholar
  • 77.Viswanathan D, Kumar NL. Bilateral femtosecond laser-enabled intrastromal astigmatic keratotomy to correct high post-penetrating keratoplasty astigmatism. J Cataract Refract Surg. 2013; 39:1916–1920.10.1016/j.jcrs.2013.08.019

    > Crossref MedlineGoogle Scholar
  • 78.Venter J, Blumenfeld R, Schallhorn S, Pelouskova M. Non-penetrating femtosecond laser intrastromal astigmatic keratotomy in patients with mixed astigmatism after previous refractive surgery. J Refract Surg. 2013; 29:180–186.10.3928/1081597X-20130129-09

    > LinkGoogle Scholar
  • 79.Kymionis GD, Tsiklis NS, Pallikaris AI, et al.Long-term follow-up of Intacs for post-LASIK corneal ectasia. Ophthalmology. 2006; 113:1909–1917.10.1016/j.ophtha.2006.05.043

    > Crossref MedlineGoogle Scholar
  • 80.Yildirim A, Uslu H, Kara N, et al.Same-day intrastromal corneal ring segment and collagen cross-linking for ectasia after laser in situ keratomileusis: long-term results. Am J Ophthalmol. 2014; 157:1070–1076.10.1016/j.ajo.2014.02.011

    > Crossref MedlineGoogle Scholar
  • 81.Fernández-Vigo J, Macarro A, Fernández Sabugal J. Undersurface ablation of the corneal flap for LASIK enhancement [article in Spanish]. Arch Soc Esp Oftalmol. 2007; 82:697–704.

    > MedlineGoogle Scholar
  • 82.Maldonado MJ, Nieto JC, Díez-Cuenca M, Piñero DP. Posterior corneal curvature changes after undersurface ablation of the flap and in-the-bed LASIK retreatment. Ophthalmology. 2006; 113:1125–1133.10.1016/j.ophtha.2006.01.065

    > Crossref MedlineGoogle Scholar
  • 83.Chang JS, Lau SY. Conductive keratoplasty to treat hyperopic overcorrection after LASIK for myopia. J Refract Surg. 2011; 27:49–55.10.3928/1081597X-20100212-10

    > LinkGoogle Scholar
  • 84.Moshirfar M, Anderson E, Hsu M, Armenia JM, Mifflin MD. Comparing the rate of regression after conductive keratoplasty with or without prior laser-assisted in situ keratomileusis or photorefractive keratectomy. Middle East Afr J Ophthalmol. 2012; 19:377–381.10.4103/0974-9233.102743

    > Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×