Skip to main content
Journal of Refractive Surgery, 2017;33(7):444–453
Published Online:https://doi.org/10.3928/1081597X-20170504-01Cited by:42

Abstract

PURPOSE:

Computational analyses were performed to quantify and directly compare the biomechanical impact of flapless and flap-based procedures in a series of patients undergoing small incision lenticule extraction (SMILE) in one eye and flap-based femtosecond lenticule extraction in the other.

METHODS:

Tomographic data from 10 eyes of 5 patients undergoing femtosecond laser refractive lenticule extraction for myopic astigmatism with or without a stromal flap (femtosecond lenticule extraction in one eye, SMILE in the contralateral eye) were used to generate computational models. Inverse finite element analyses were performed at physiologic intraocular pressure followed by forward analyses at elevated intraocular pressure to assess corneal displacement and stress under differential loading. Case-specific treatment settings were incorporated. Preoperative material constants were obtained through inverse finite element analyses, and the surgically induced change in fiber stiffness within each flap was determined by minimization of the error between the simulated and actual 6-month topographic outcomes.

RESULTS:

Flap-based procedures produced a 49% (range: 2% to 87%) greater mean reduction in effective stromal collagen fiber stiffness within the flap region than contralateral SMILE cases. Lower stresses and deformations were observed within the residual stromal bed in SMILE cases than in flap-based cases. Stromal bed displacements and stresses were more affected by a loading increase in flap-based eyes than flapless eyes.

CONCLUSIONS:

Intrastromal flapless procedures had less impact on anterior stromal collagen mechanics and resulted in lower stromal bed displacements and stresses than flap-based procedures in contralateral eyes. However, biomechanical impact varied widely between individuals and this reinforces the need for individualized assessment of ectasia risk.

[J Refract Surg. 2017;33(7):444–453].

  • 1.Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011; 95:335–339.10.1136/bjo.2009.174284

    > Crossref MedlineGoogle Scholar
  • 2.Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J Refract Surg. 2013; 29:454–460.10.3928/1081597X-20130617-03

    > LinkGoogle Scholar
  • 3.Sinha Roy A, Dupps WJ, Roberts CJ. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis. J Cataract Refract Surg. 2014; 40:971–980.10.1016/j.jcrs.2013.08.065

    > Crossref MedlineGoogle Scholar
  • 4.Pedersen IB, Bak-Nielsen S, Vestergaard AH, Ivarsen A, Hjortdal J. Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefes Arch Clin Exp Ophthalmol. 2014; 252:1329–1335.10.1007/s00417-014-2667-6

    > Crossref MedlineGoogle Scholar
  • 5.Shen Y, Chen Z, Knorz MC, Li M, Zhou J, Zhou X. Comparison of corneal deformation parameters after SMILE, LASEK, and femtosecond laser-assisted LASIK. J Refract Surg. 2014; 30:310–318.10.3928/1081597X-20140422-01

    > LinkGoogle Scholar
  • 6.Wang D, Liu M, Chen Y, et al.Differences in the corneal biomechanical changes after SMILE and LASIK. J Refract Surg. 2014; 30:702–707.10.3928/1081597X-20140903-09

    > LinkGoogle Scholar
  • 7.Agca A, Ozgurhan EB, Demirok A, et al.Comparison of corneal hysteresis and corneal resistance factor after small incision lenticule extraction and femtosecond laser-assisted LASIK: a prospective fellow eye study. Cont Lens Anterior Eye. 2014; 37:77–80.10.1016/j.clae.2013.05.003

    > Crossref MedlineGoogle Scholar
  • 8.Pinsky P, van der Heide D, Chernyak D. Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg. 2005; 31:136–145.10.1016/j.jcrs.2004.10.048

    > Crossref MedlineGoogle Scholar
  • 9.Pandolfi A, Holzapfel GA. Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J Biomech Eng. 2008; 130:061006.10.1115/1.2982251

    > Crossref MedlineGoogle Scholar
  • 10.Elsheikh A, Whitford C, Hamarashid R, Kassem W, Joda A, Büchler P. Stress free configuration of the human eye. Med Eng Phys. 2013; 35:211–216.10.1016/j.medengphy.2012.09.006

    > Crossref MedlineGoogle Scholar
  • 11.Roy AS, Dupps WJ. Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking. Invest Ophthalmol Vis Sci. 2011; 52:9174–9187.10.1167/iovs.11-7395

    > Crossref MedlineGoogle Scholar
  • 12.Seven I, Dupps WJ. Patient-specific finite element simulations of standard incisional astigmatism surgery and a novel patterned collagen crosslinking approach to astigmatism treatment. J Med Device. 2013; 7:0409131–409132.10.1115/1.4025980

    > Crossref MedlineGoogle Scholar
  • 13.Seven I, Sinha Roy A, Dupps WJ. Patterned corneal collagen crosslinking for astigmatism: computational modeling study. J Cataract Refract Surg. 2014; 40:943–953.10.1016/j.jcrs.2014.03.019

    > Crossref MedlineGoogle Scholar
  • 14.Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity. 2000; 61:1–48.10.1023/A:1010835316564

    > CrossrefGoogle Scholar
  • 15.Novis C. Astigmatism and the toric intraocular lens and other vertex distance effects. Surv Ophthalmol. 1997; 42:268–270.10.1016/S0039-6257(97)00091-X

    > Crossref MedlineGoogle Scholar
  • 16.Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg. 1988; 14:46–52.10.1016/S0886-3350(88)80063-4

    > Crossref MedlineGoogle Scholar
  • 17.Mrochen M, Donitzky C, Wüllner C, Löffler J. Wavefront-optimized ablation profiles: theoretical background. J Cataract Refract Surg. 2004; 30:775–785.10.1016/j.jcrs.2004.01.026

    > Crossref MedlineGoogle Scholar
  • 18.Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008; 24:S85–S89.

    > MedlineGoogle Scholar
  • 19.Solomon KD, Fernández de Castro LE, Sandoval HP, et al.LASIK world literature review: quality of life and patient satisfaction. Ophthalmology. 2009; 116:691–701.10.1016/j.ophtha.2008.12.037

    > Crossref MedlineGoogle Scholar
  • 20.Winkler M, Chai D, Kriling S, et al.Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest Ophthalmol Vis Sci. 2011; 52:8818–8827.10.1167/iovs.11-8070

    > Crossref MedlineGoogle Scholar
  • 21.Komai Y, Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 1991; 32:2244–2258.

    > MedlineGoogle Scholar
  • 22.Winkler M, Shoa G, Xie Y, et al.Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. Invest Ophthalmol Vis Sci. 2013; 54:7293–7301.10.1167/iovs.13-13150

    > Crossref MedlineGoogle Scholar
  • 23.Morishige N, Wahlert AJ, Kenney MC, et al.Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci. 2007; 48:1087–1094.10.1167/iovs.06-1177

    > Crossref MedlineGoogle Scholar
  • 24.Seven I, Vahdati A, De Stefano VS, Krueger RR, Dupps WJ. Comparison of patient-specific computational modeling predictions and clinical outcomes of LASIK for myopia. Invest Ophthalmol Vis Sci. 2016; 57:6287–6297.10.1167/iovs.16-19948

    > Crossref MedlineGoogle Scholar
  • 25.Sinha Roy A, Rocha KM, Randleman JB, Stulting RD, Dupps WJ. Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus. Exp Eye Res. 2013; 113:92–104.10.1016/j.exer.2013.04.010

    > Crossref MedlineGoogle Scholar
  • 26.Roy AS, Dupps WJ. Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J Biomech Eng. 2011; 133:011002.10.1115/1.4002934

    > Crossref MedlineGoogle Scholar
  • 27.Vahdati A, Seven I, Mysore N, Randleman JB, Dupps WJ. Computational biomechanical analysis of asymmetric ectasia risk in unilateral post-LASIK ectasia. J Refract Surg. 2016; 32:811–820.10.3928/1081597X-20160929-01

    > LinkGoogle Scholar
  • 28.Dupps WJ, Seven I. A large-scale computational analysis of corneal structural response and ectasia risk in myopic laser refractive surgery. Trans Am Ophthalmol Soc. 2016; 114:t1.

    > MedlineGoogle Scholar
  • 29.Sánchez P, Moutsouris K, Pandolfi A. Biomechanical and optical behavior of human corneas before and after photorefractive keratectomy. J Cataract Refract Surg. 2014; 40:905–917.10.1016/j.jcrs.2014.03.020

    > Crossref MedlineGoogle Scholar
  • 30.Carvalho LA, Prado M, Cunha RH, et al.Keratoconus prediction using a finite element model of the cornea with local biomechanical properties. Arq Bras Oftalmol. 2009; 72:139–145.10.1590/S0004-27492009000200002

    > Crossref MedlineGoogle Scholar
  • 31.Gefen A, Shalom R, Elad D, Mandel Y. Biomechanical analysis of the keratoconic cornea. J Mech Behav Biomed Mater. 2009; 2:224–236.10.1016/j.jmbbm.2008.07.002

    > Crossref MedlineGoogle Scholar
  • 32.Roberts CJ, Dupps WJ. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014; 40:991–998.10.1016/j.jcrs.2014.04.013

    > Crossref MedlineGoogle Scholar
  • 33.El-Naggar MT. Bilateral ectasia after femtosecond laser-assisted small-incision lenticule extraction. J Cataract Refract Surg. 2015; 41:884–888.10.1016/j.jcrs.2015.02.008

    > Crossref MedlineGoogle Scholar
  • 34.Wang Y, Cui C, Li Z, et al.Corneal ectasia 6.5 months after small-incision lenticule extraction. J Cataract Refract Surg. 2015; 41:1100–1106.10.1016/j.jcrs.2015.04.001

    > Crossref MedlineGoogle Scholar
  • 35.Mattila JS, Holopainen JM. Bilateral ectasia after femtosecond laser-assisted small incision lenticule extraction (SMILE). J Refract Surg. 2016; 32:497–500.10.3928/1081597X-20160502-03

    > LinkGoogle Scholar
  • 36.Dupps WJ. Ectasia risk: a multifactorial conundrum. J Cataract Refract Surg. 2015; 41:699–700.10.1016/j.jcrs.2015.03.009

    > Crossref MedlineGoogle Scholar
  • 37.Randleman JB. Ectasia after corneal refractive surgery: nothing to SMILE about. J Refract Surg. 2016; 32:434–435.10.3928/1081597X-20160613-01

    > LinkGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×