Skip to main content
Journal of Refractive Surgery, 2021;37(1):60–68
Cite this articlePublished Online:https://doi.org/10.3928/1081597X-20201030-02Cited by:18

Abstract

PURPOSE:

To assess the accuracy of intraoperative aberrometry, the Barrett True-K No History (Barrett TKNH), Barrett TKNH with posterior corneal measurements (Barrett TKNH with PC), Shammas-PL, and Haigis-L formulas in patients with cataract who had prior myopic refractive surgery.

METHODS:

This was a retrospective consecutive case series of patients with prior myopic refractive surgery undergoing cataract extraction. Mean absolute error (MAE) and median absolute error (MedAE) of refraction prediction were compared for each formula. Interactions of each biometry measurement were modeled for each formula to evaluate those with the most significant impact on refraction prediction.

RESULTS:

One hundred sixteen eyes of 79 patients were analyzed. MAE was 0.40 ± 0.33 diopters (D) for intraoperative aberrometry and 0.42 ± 0.31 D for the Barrett TKNH, 0.38 ± 0.30 D for the Barrett TKNH with PC, 0.47 ± 0.38 D for the Shammas-PL, and 0.56 ± 0.39 D for the Haigis-L formulas. Comparisons between formulas were significant for Barrett TKNH versus Barrett TKNH with PC formulas (P = .046), Barrett TKNH with PC versus Shammas-PL formulas (P = .023), and for all comparisons with the Haigis-L formula (P < .001), and not significant for all other comparisons (P > .05). Eyes were within ±0.50 D of prediction 73%, 72%, 69%, 62%, and 52% of the time for intraoperative aberrometry, the Barrett TKNH with PC, Barrett TKNH, Shammas-PL, and Haigis-L formulas, respectively. Corneal asphericity (Q value) was significantly associated with prediction error for all five methods. Changes in anterior chamber depth had a significant impact on Shammas-PL prediction errors.

CONCLUSIONS:

Newer technology using information from the posterior cornea modestly improved outcomes when compared to established methods for intraocular lens selection in eyes that had previous laser refractive surgery for myopia.

[J Refract Surg. 2021;37(1):60–68.]

  • 1.Savini G, Hoffer KJ. Intraocular lens power calculation in eyes with previous corneal refractive surgery. Eye Vis (Lond). 2018; 5(1):18.10.1186/s40662-018-0110-5

    > Crossref MedlineGoogle Scholar
  • 2.Hodge C, McAlinden C, Lawless M, Chan C, Sutton G, Martin A. Intraocular lens power calculation following laser refractive surgery. Eye Vis (Lond). 2015; 2(1):7.10.1186/s40662-015-0017-3

    > Crossref MedlineGoogle Scholar
  • 3.Haigis W. Intraocular lens calculation after refractive surgery. Eur Ophthalmic Rev. 2012; 6(1):21–24.10.17925/EOR.2012.06.01.21

    > CrossrefGoogle Scholar
  • 4.McCarthy M, Gavanski GM, Paton KE, Holland SP. Intraocular lens power calculations after myopic laser refractive surgery: a comparison of methods in 173 eyes. Ophthalmology. 2011; 118(5):940–944.10.1016/j.ophtha.2010.08.048

    > Crossref MedlineGoogle Scholar
  • 5.Wang L, Hill WE, Koch DD. Evaluation of intraocular lens power prediction methods using the American Society of Cataract and Refractive Surgeons Post-Keratorefractive Intraocular Lens Power Calculator. J Cataract Refract Surg. 2010; 36(9):1466–1473.10.1016/j.jcrs.2010.03.044

    > Crossref MedlineGoogle Scholar
  • 6.Hoffer KJ. Intraocular lens power calculation after previous laser refractive surgery. J Cataract Refract Surg. 2009; 35(4):759–765.10.1016/j.jcrs.2009.01.005

    > Crossref MedlineGoogle Scholar
  • 7.Chean CS, Aw Yong BK, Comely S, et al.Refractive outcomes following cataract surgery in patients who have had myopic laser vision correction. BMJ Open Ophthalmol. 2019; 4(1):e000242.10.1136/bmjophth-2018-000242

    > Crossref MedlineGoogle Scholar
  • 8.Cho K, Lim DH, Yang CM, Chung ES, Chung TY. Comparison of intraocular lens power calculation methods following myopic laser refractive surgery: new options using a rotating Scheimpflug camera. Korean J Ophthalmol. 2018; 32(6):497–505.10.3341/kjo.2018.0008

    > Crossref MedlineGoogle Scholar
  • 9.Wu Y, Liu S, Liao R. Prediction accuracy of intraocular lens power calculation methods after laser refractive surgery. BMC Ophthalmol. 2017; 17(1):44.10.1186/s12886-017-0439-x

    > Crossref MedlineGoogle Scholar
  • 10.Vrijman V, Abulafia A, van der Linden JW, van der Meulen IJE, Mourits MP, Lapid-Gortzak R. ASCRS calculator formula accuracy in multifocal intraocular lens implantation in hyperopic corneal refractive laser surgery eyes. J Cataract Refract Surg. 2019; 45(5):582–586.10.1016/j.jcrs.2018.12.006

    > Crossref MedlineGoogle Scholar
  • 11.Asia-Pacific Association of Cataract and Refractive Surgeons. Barrett True K Formula V2.0. http://calc.apacrs.org/Barrett_True_K_Universal_2105

    > Google Scholar
  • 12.Abulafia A, Hill WE, Koch DD, Wang L, Barrett GD. Accuracy of the Barrett True-K formula for intraocular lens power prediction after laser in situ keratomileusis or photorefractive keratectomy for myopia. J Cataract Refract Surg. 2016; 42(3):363–369.10.1016/j.jcrs.2015.11.039

    > Crossref MedlineGoogle Scholar
  • 13.Wang L, Tang M, Huang D, Weikert MP, Koch DD. Comparison of newer intraocular lens power calculation methods for eyes after corneal refractive surgery. Ophthalmology. 2015; 122(12):2443–2449.10.1016/j.ophtha.2015.08.037

    > Crossref MedlineGoogle Scholar
  • 14.Vrijman V, Abulafia A, van der Linden JW, van der Meulen IJE, Mourits MP, Lapid-Gortzak R. Evaluation of different IOL calculation formulas of the ASCRS calculator in eyes after corneal refractive laser surgery for myopia with multifocal IOL implantation. J Refract Surg. 2019; 35(1):54–59.10.3928/1081597X-20181119-01

    > LinkGoogle Scholar
  • 15.Wang L, Spektor T, de Souza RG, Koch DD. Evaluation of total keratometry and its accuracy for intraocular lens power calculation in eyes after corneal refractive surgery. J Cataract Refract Surg. 2019; 45(10):1416–1421.10.1016/j.jcrs.2019.05.020

    > Crossref MedlineGoogle Scholar
  • 16.Seitz B, Langenbucher A. Intraocular lens calculations status after corneal refractive surgery. Curr Opin Ophthalmol. 2000; 11(1):35–46.10.1097/00055735-200002000-00006

    > Crossref MedlineGoogle Scholar
  • 17.Cerviño A, Hosking SL, Montes-Mico R, Bates K. Clinical ocular wavefront analyzers. J Refract Surg. 2007; 23(6):603–616.10.3928/1081-597X-20070601-12

    > LinkGoogle Scholar
  • 18.Fram NR, Masket S, Wang L. Comparison of intraoperative aberrometry, OCT-based IOL formula, Haigis-L, and Masket formulae for IOL power calculation after laser vision correction. Ophthalmology. 2015; 122(6):1096–1101.10.1016/j.ophtha.2015.01.027

    > Crossref MedlineGoogle Scholar
  • 19.Ianchulev T, Hoffer KJ, Yoo SH, et al.Intraoperative refractive biometry for predicting intraocular lens power calculation after prior myopic refractive surgery. Ophthalmology. 2014; 121(1):56–60.10.1016/j.ophtha.2013.08.041

    > Crossref MedlineGoogle Scholar
  • 20.Canto AP, Chhadva P, Cabot F, et al.Comparison of IOL power calculation methods and intraoperative wavefront aberrometer in eyes after refractive surgery. J Refract Surg. 2013; 29(7):484–489.10.3928/1081597X-20130617-07

    > LinkGoogle Scholar
  • 21.Shammas HJ, Shammas MC. No-history method of intraocular lens power calculation for cataract surgery after myopic laser in situ keratomileusis. J Cataract Refract Surg. 2007; 33(1):31–36.10.1016/j.jcrs.2006.08.045

    > Crossref MedlineGoogle Scholar
  • 22.Shammas HJ, Shammas MC, Garabet A, Kim JH, Shammas A, LaBree L. Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis. Am J Ophthalmol. 2003; 136(3):426–432.10.1016/S0002-9394(03)00275-7

    > Crossref MedlineGoogle Scholar
  • 23.Haigis W. Intraocular lens calculation after refractive surgery for myopia: Haigis-L formula. J Cataract Refract Surg. 2008; 34(10):1658–1663.10.1016/j.jcrs.2008.06.029

    > Crossref MedlineGoogle Scholar
  • 24.User Group for Laser Interference Biometry. ULIB. AccessedMarch2019. http://ocusoft.de/ulib/c1.htm

    > Google Scholar
  • 25.Wang L, Koch DD, Hill W, Abulafia A. Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes. J Cataract Refract Surg. 2017; 43(8):999–1002.10.1016/j.jcrs.2017.08.003

    > Crossref MedlineGoogle Scholar
  • 26.Tang M, Wang L, Koch DD, Li Y, Huang D. Intraocular lens power calculation after previous myopic laser vision correction based on corneal power measured by Fourier-domain optical coherence tomography. J Cataract Refract Surg. 2012; 38(4):589–594.10.1016/j.jcrs.2011.11.025

    > Crossref MedlineGoogle Scholar
  • 27.Savini G, Hoffer KJ, Schiano-Lomoriello D, Barboni P. Intraocular lens power calculation using a Placido disk-Scheimpflug tomographer in eyes that had previous myopic corneal excimer laser surgery. J Cataract Refract Surg. 2018; 44(8):935–941.10.1016/j.jcrs.2018.05.018

    > Crossref MedlineGoogle Scholar
  • 28.Potvin R, Hill W. New algorithm for intraocular lens power calculations after myopic laser in situ keratomileusis based on rotating Scheimpflug camera data. J Cataract Refract Surg. 2015; 41(2):339–347.10.1016/j.jcrs.2014.05.040

    > Crossref MedlineGoogle Scholar
  • 29.Gale RP, Saldana M, Johnston RL, Zuberbuhler B, McKibbin M. Benchmark standards for refractive outcomes after NHS cataract surgery. Eye (Lond). 2009; 23(1):149–152.10.1038/sj.eye.6702954

    > Crossref MedlineGoogle Scholar
  • 30.Sandoval HP, Donnenfeld ED, Kohnen T, et al.Modern laser in situ keratomileusis outcomes. J Cataract Refract Surg. 2016; 42(8):1224–1234.10.1016/j.jcrs.2016.07.012

    > Crossref MedlineGoogle Scholar
  • 31.Hoffer KJ, Aramberri J, Haigis W, et al.Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol. 2015; 160(3):403–405.e1.10.1016/j.ajo.2015.05.029

    > Crossref MedlineGoogle Scholar
  • 32.Kane JX, Van Heerden A, Atik A, Petsoglou C. Intraocular lens power formula accuracy: comparison of 7 formulas. J Cataract Refract Surg. 2016; 42(10):1490–1500.10.1016/j.jcrs.2016.07.021

    > Crossref MedlineGoogle Scholar
  • 33.Abulafia A, Barrett GD, Koch DD, Wang L, Assia EI. Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol. 2016; 164:149–150.10.1016/j.ajo.2016.01.010

    > Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×