Skip to main content
Journal of Refractive Surgery, 2021;37(1):32–40
Published Online:https://doi.org/10.3928/1081597X-20201030-03Cited by:8

Abstract

PURPOSE:

To investigate the pathogenicity and immunogenicity of human corneal stromal lenticules from small incision lenticule extraction (SMILE).

METHODS:

Serological testing was completed prior to sample collection to rule out infectious diseases. Pathogens herpes simplex viruses (HSV) type 1 and type 2 were screened for by real-time fluorescent quantitative polymerase chain reaction, and bacteria, fungi, and Acanthamoeba from 128 lenticules of 64 patients were cultured. A total of 132 lenticules from 93 patients were randomly assigned to the fresh group, −78 °C anhydrous glycerol preservation group (glycerol group), and 0.1% sodium dodecyl sulfate decellularization group (SDS group) in pairs and detected by immunohistochemistry, Western blot, transmission electron microscopy, transmittance, and nanoindentation.

RESULTS:

The fresh lenticules were all negative for HSV-1, HSV-2, bacteria, fungi, and Acanthamoeba. HLA-I A/B/C and HLA-II DR antigens were all expressed in fresh lenticules but were clearly reduced after preservation at −78 °C in anhydrous glycerol or decellularization in 0.1% SDS. The collagen fibers of the lenticules in the fresh group were regularly arranged, and the keratocytes were intact. The fibers in the glycerol group were regularly arranged, and the integrity of keratocytes was destroyed. The fibers in the SDS group were disordered and had no cellular structure. The transmittance and Young's modulus were highest in the fresh group, lower in the glycerol group, and lowest in the SDS group.

CONCLUSIONS:

Risk of infection is low, but risk of rejection exists on the reuse of fresh human corneal stromal lenticules from SMILE. Anhydrous glycerol preservation at −78 °C is an ideal method for reducing antigens without damaging the structure and function of lenticules.

[J Refract Surg. 2021;37(1):32–40.]

  • 1.Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011; 95(3):335–339.10.1136/bjo.2009.174284

    > Crossref MedlineGoogle Scholar
  • 2.Pradhan KR, Reinstein DZ, Carp GI, Archer TJ, Gobbe M, Gurung R. Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg. 2013; 29(11):777–782.10.3928/1081597X-20131021-07

    > LinkGoogle Scholar
  • 3.Ganesh S, Brar S, Rao PA. Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea. 2014; 33(12):1355–1362.10.1097/ICO.0000000000000276

    > Crossref MedlineGoogle Scholar
  • 4.Xue C, Xia Y, Chen Y, Hu Q, Huang Z. A novel approach: treating corneal perforation with corneal lenticule. Chin Med J (Engl). 2014; 127(24):4295.

    > MedlineGoogle Scholar
  • 5.Wu F, Jin X, Xu Y, Yang Y. Treatment of corneal perforation with lenticules from small incision lenticule extraction surgery: a preliminary study of 6 patients. Cornea. 2015; 34(6):658–663.10.1097/ICO.0000000000000397

    > Crossref MedlineGoogle Scholar
  • 6.Jiang Y, Li Y, Liu XW, Xu J. A novel tectonic keratoplasty with femtosecond laser intrastromal lenticule for corneal ulcer and perforation. Chin Med J (Engl). 2016; 129(15):1817–1821.10.4103/0366-6999.186639

    > Crossref MedlineGoogle Scholar
  • 7.Bhandari V, Ganesh S, Brar S, Pandey R. Application of the SMILE-derived glued lenticule patch graft in microperforations and partial-thickness corneal defects. Cornea. 2016; 35(3):408–412.10.1097/ICO.0000000000000741

    > Crossref MedlineGoogle Scholar
  • 8.Jacob S, Kumar DA, Agarwal A, Agarwal A, Aravind R, Saijimol AI. Preliminary evidence of successful near vision enhancement with a new technique: presbyopic allogenic refractive lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg. 2017; 33(4):224–229.10.3928/1081597X-20170111-03

    > LinkGoogle Scholar
  • 9.Jacob S, Narasimhan S, Agarwal A, Agarwal A, Ai S. Combined interface tattooing and fibrin glue-assisted sutureless corneal resurfacing with donor lenticule obtained from small-incision lenticule extraction for limbal dermoid. J Cataract Refract Surg. 2017; 43(11):1371–1375.10.1016/j.jcrs.2017.09.021

    > Crossref MedlineGoogle Scholar
  • 10.Sachdev MS, Gupta D, Sachdev G, Sachdev R. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea. J Cataract Refract Surg. 2015; 41(5):918–923.10.1016/j.jcrs.2015.04.007

    > Crossref MedlineGoogle Scholar
  • 11.Pant OP, Hao JL, Zhou DD, Wang F, Lu CW. A novel case using femtosecond laser-acquired lenticule for recurrent pterygium: case report and literature review. J Int Med Res. 2018; 46(6):2474–2480.10.1177/0300060518765303

    > Crossref MedlineGoogle Scholar
  • 12.Li M, Zhao F, Li M, Knorz MC, Zhou X. Treatment of corneal ectasia by implantation of an allogenic corneal lenticule. J Refract Surg. 2018; 34(5):347–350.10.3928/1081597X-20180323-01

    > LinkGoogle Scholar
  • 13.Lazaridis A, Reinstein DZ, Archer TJ, Schulze S, Sekundo W. Refractive lenticule transplantation for correction of iatrogenic hyperopia and high astigmatism after LASIK. J Refract Surg. 2016; 32(11):780–786.10.3928/1081597X-20160726-01

    > LinkGoogle Scholar
  • 14.O'Day DM. Diseases potentially transmitted through corneal transplantation. Ophthalmology. 1989; 96(8):1133–1137.10.1016/S0161-6420(89)32762-X

    > Crossref MedlineGoogle Scholar
  • 15.Xie L. Corneal infections. In: , Xie L. Clinical Cornea. People's Medical Publishing House; 2014:28–58.

    > Google Scholar
  • 16.Wang Z, Ge J, Xu J, Chen J. [Relative quantitative analysis of corneal immunogenicity]. Zhonghua Yan Ke Za Zhi. 2002; 38(9):535–538.

    > MedlineGoogle Scholar
  • 17.Zhang J, Zhai C, Zheng Y, et al.Allogeneic corneal small incision intrastromal lenticule inlays for moderate and high hyperopia: one year follow up. Chin J Exp Ophthalmol. 2018; 36:355–359.

    > Google Scholar
  • 18.Wang D, Li Y, Sun M, Guo N, Zhang F. Lenticule thickness accuracy and influence in predictability and stability for different refractive errors after SMILE in Chinese myopic eyes. Curr Eye Res. 2019; 44(1):96–101.10.1080/02713683.2018.1532011

    > Crossref MedlineGoogle Scholar
  • 19.Li J, Shi S, Zhang X, et al.Comparison of different methods of glycerol preservation for deep anterior lamellar keratoplasty eligible corneas. Invest Ophthalmol Vis Sci. 2012; 53(9):5675–5685.10.1167/iovs.12-9936

    > Crossref MedlineGoogle Scholar
  • 20.Kiatos E, Armstrong JJ, Hutnik CM, Tsioros SM, Malvankar-Mehta MS, Hodge WG. The value of corneoscleral rim cultures in keratoplasty: a systematic review and cost-effectiveness analysis. Clinicoecon Outcomes Res. 2017; 9:459–474.10.2147/CEOR.S139949

    > Crossref MedlineGoogle Scholar
  • 21.Openshaw H, McNeill JI, Lin XH, Niland J, Cantin EM. Herpes simplex virus DNA in normal corneas: persistence without viral shedding from ganglia. J Med Virol. 1995; 46(1):75–80.10.1002/jmv.1890460116

    > Crossref MedlineGoogle Scholar
  • 22.Remeijer L, Duan R, van Dun JM, Wefers Bettink MA, Osterhaus AD, Verjans GM. Prevalence and clinical consequences of herpes simplex virus type 1 DNA in human cornea tissues. J Infect Dis. 2009; 200(1):11–19.10.1086/599329

    > Crossref MedlineGoogle Scholar
  • 23.Cleator GM, Klapper PE, Dennett C, et al.Corneal donor infection by herpes simplex virus: herpes simplex virus DNA in donor corneas. Cornea. 1994; 13(4):294–304.10.1097/00003226-199407000-00003

    > Crossref MedlineGoogle Scholar
  • 24.Chen Q, Zhang J, Zheng L, et al.Conjunctiva and palpebral margin bacterial culture and drug sensitive tests before LASIK. Int J Ophthalmol. 2005; 5:482–484.

    > Google Scholar
  • 25.Liang Q, Zhou Y, Li R, et al.Bacteriological analysis on conjunctival sac of preoperative patients undergoing laser in situ keratomileusis (LASIK). Chin J Pract Ophthalmol. 2005; 23:403–405.

    > Google Scholar
  • 26.Lu Y, Wang W, Shi Y. Fungal culture in normal conjunctival sac. Zhonghua Yan Ke Za Zhi. 1991; 27:312–314.

    > Google Scholar
  • 27.Gong X, Lu J, Shao M. [Survey of fungi and bacterinum of the conjunctival sac in Guangzhou area]. Yan Ke Xue Bao. 1991; 7(2):110–112.

    > MedlineGoogle Scholar
  • 28.Khan AM, Larson B, Noth J, Rosen R, Bouchard C. Microbial cultures of the microkeratome blade immediately after flap construction in laser in situ keratomileusis. J Cataract Refract Surg. 2008; 34(5):842–845.10.1016/j.jcrs.2008.01.025

    > Crossref MedlineGoogle Scholar
  • 29.Pang CJ, Wang LY, Sun ST, Han L, Li X. [The investigation of microbial culturing of microkeratome blades and sponges used in laser in situ keratomileusis]. Zhonghua Yan Ke Za Zhi. 2012; 48(5):394–397.

    > MedlineGoogle Scholar
  • 30.Xie L. Complications and management of penetrating keratoplasty. In: , Xie L. Corneal Transplantation. People's Medical Publishing House; 2000:228.

    > Google Scholar
  • 31.Treseler PA, Foulks GN, Sanfilippo F. The expression of HLA antigens by cells in the human cornea. Am J Ophthalmol. 1984; 98(6):763–772.10.1016/0002-9394(84)90696-2

    > Crossref MedlineGoogle Scholar
  • 32.Pepose JS, Gardner KM, Nestor MS, Foos RY, Pettit TH. Detection of HLA class I and II antigens in rejected human corneal allografts. Ophthalmology. 1985; 92(11):1480–1484.10.1016/S0161-6420(85)33837-X

    > Crossref MedlineGoogle Scholar
  • 33.Delbosc B, Fellmann D, Piquot X, Montard M, Royer J. [HLA antigenicity of normal and pathological corneas]. J Fr Ophtalmol. 1990; 13(11–12):535–541.

    > MedlineGoogle Scholar
  • 34.Creemers PC, Kahn D, Hill JC. HLA-A and -B alleles in cornea donors as risk factors for graft rejection. Transpl Immunol. 1999; 7(1):15–18.10.1016/S0966-3274(99)80014-8

    > Crossref MedlineGoogle Scholar
  • 35.Liang G, Wang L, Pan Z, Zhang F. Comparison of the different preservative methods for refractive lenticules following SMILE. Curr Eye Res. 2019; 44(8):832–839.10.1080/02713683.2019.1597890

    > Crossref MedlineGoogle Scholar
  • 36.King JH, McTIGUE JW, Meryman HT. Preservation of corneas for lamellar keratoplasty: a simple method of chemical glycerine-dehydration. Trans Am Ophthalmol Soc. 1961; 59:194–201.

    > MedlineGoogle Scholar
  • 37.King JH, Townsend WM. The prolonged storage of donor corneas by glycerine dehydration. Trans Am Ophthalmol Soc. 1984; 82:106–110.

    > MedlineGoogle Scholar
  • 38.Startseva OI, Sinelnikov ME, Babayeva YV, Trushenkova VV. [Decellularization of organs and tissues]. Khirurgiia (Mosk). 2019;( 8):59–62. 10.17116/hirurgia201908159

    > CrossrefGoogle Scholar
  • 39.Yam GH, Yusoff NZ, Goh TW, et al.Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep. 2016; 6(1):26339.10.1038/srep26339

    > Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×