Predicted Refraction Variability Due to Reliability of Nine Optical Biometers for Intraocular Lens Power Calculation
Abstract
PURPOSE:
To assess the influence of reliability (repeatability and reproducibility) of eye parameter measurements on the prediction refraction by using the outcomes of nine optical biometers reported in the literature.
METHODS:
A search was conducted in PubMed focused on the outcomes from original studies regarding reliability. The mean population of within-subject standard deviation (Sw) was estimated from the mean samples reported in the included studies. Repeatability coefficients (R) for the mean population were computed as 2.77 × Sw. The influence of reliability on the prediction refraction for eye biometric parameters, such as mean corneal power in diopters (D) (Km), anterior chamber depth (ACD), and axial length (AXL), were evaluated using a thick lens formula. The lens thickness (LT), central corneal thickness (CCT), and white-to-white (WTW) distance were also evaluated.
RESULTS:
The repeatability of optical biometers ranged from 0.19 to 0.42 D for Km, from 0.04 to 0.13 mm for ACD, from 0.03 to 0.22 mm for AXL, from 0.06 to 0.13 mm for LT, from 5.5 to 17.7 µm for CCT, and from 0.18 to 0.48 mm for WTW distance. Total prediction refraction due to repeatability ranged from 0.21 to 0.61 D, with Km the variable that caused the major part of total prediction refraction variability, followed by AXL and ACD. Reproducibility for the evaluated variables was generally inside the repeatability ranges.
CONCLUSIONS:
New optical biometers are equally reliable as earlier technologies. Special attention should be focused on Km and AXL, which explain the major part of prediction refraction variability.
[J Refract Surg. 2022;38(2):120–127.]
- 1. . Pursuing perfection in IOL calculations. II. Measurement foibles: measurement errors, validation criteria, IOL constants, and lane length. J Cataract Refract Surg. 2017; 43(7):869–870. doi:
10.1016/j.jcrs.2017.07.006 28823428 > Crossref MedlineGoogle Scholar - 2. . Statistical methods in medical research. Stat Methods Med Res. 1999; 8:135–160. doi:
10.1177/096228029900800204 10501650 > Crossref MedlineGoogle Scholar - 3. . Precision (repeatability and reproducibility) studies and sample-size calculation. J Cataract Refract Surg. 2015; 41(12):2598–2604. doi:
10.1016/j.jcrs.2015.06.029 > Crossref MedlineGoogle Scholar - 4. . Ocular biometry with swept-source optical coherence tomography. J Cataract Refract Surg. 2021; 47(6):802–814. doi:
10.1097/j.jcrs.0000000000000551 > Crossref MedlineGoogle Scholar - 5. . Overview of the repeatability, reproducibility, and agreement of the biometry values provided by various ophthalmic devices. Am J Ophthalmol. 2014; 158(6):1111–1120.e1. doi:
10.1016/j.ajo.2014.08.014 25128596 > Crossref MedlineGoogle Scholar - 6. . Update on intraocular lens power calculation study protocols. Ophthalmology. 2021; 128(11):e115–e120. doi:
10.1016/j.ophtha.2020.07.005 > Crossref MedlineGoogle Scholar - 7. . Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg. 2015; 41(10):2224–2232. doi:
10.1016/j.jcrs.2015.03.019 26703299 > Crossref MedlineGoogle Scholar - 8. . Repeatability and agreement of Scheimpflug-based and swept-source optical biometry measurements. Cont Lens Anterior Eye. 2017; 40(5):318–322. doi:
10.1016/j.clae.2017.03.007 28342729 > Crossref MedlineGoogle Scholar - 9. . Comparison of a new optical biometry with an optical low-coherence reflectometry for ocular biometry. Cont Lens Anterior Eye. 2016; 39(5):336–341. doi:
10.1016/j.clae.2016.06.001 27344235 > Crossref MedlineGoogle Scholar - 10. . Precision of a new ocular biometer in eyes with cataract using swept source optical coherence tomography combined with Placido-disk corneal topography. Sci Rep. 2017; 7(1):13736. doi:
10.1038/s41598-017-13800-7 29061989 > Crossref MedlineGoogle Scholar - 11. . Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer. J Cataract Refract Surg. 2015; 41(10):2233–2241. doi:
10.1016/j.jcrs.2015.10.062 26703300 > Crossref MedlineGoogle Scholar - 12. . Repeatability of biometry measured by IOLMaster 700, Lenstar LS 900 and Anterion, and its impact on predicted intraocular lens power. J Cataract Refract Surg. 2021; 47(5):585–592. doi:
10.1097/j.jcrs.0000000000000494 > Crossref MedlineGoogle Scholar - 13. . Comparison of anterior segment parameters and axial length using two Scheimpflug devices with integrated optical biometers. Clin Ophthalmol. 2020; 14:3487–3494. doi:
10.2147/OPTH.S278701 33122885 > Crossref MedlineGoogle Scholar - 14. . Ocular measurements of a swept-source biometer: repeatability data and comparison with an optical low-coherence interferometry biometer. J Cataract Refract Surg. 2019; 45(6):789–797. doi:
10.1016/j.jcrs.2018.12.018 30850124 > Crossref MedlineGoogle Scholar - 15. . New approach for the calculation of the intraocular lens power based on the fictitious corneal refractive index estimation. J Ophthalmol. 2019; 2019:2796126. doi:
10.1155/2019/2796126 31218083 > Crossref MedlineGoogle Scholar - 16. . Biometry with a new swept-source optical coherence tomography biometer: repeatability and agreement with an optical low-coherence reflectometry device. J Cataract Refract Surg. 2016; 42(4):577–581. doi:
10.1016/j.jcrs.2016.01.038 27113881 > Crossref MedlineGoogle Scholar - 17. . Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg. 2016; 42(1):76–83. doi:
10.1016/j.jcrs.2015.07.039 26948781 > Crossref MedlineGoogle Scholar - 18. . Evaluation of the repeatability of a swept-source ocular biometer for measuring ocular biometric parameters. Graefes Arch Clin Exp Ophthalmol. 2017; 255(2):343–349. doi:
10.1007/s00417-016-3555-z > Crossref MedlineGoogle Scholar - 19. . Comparison of axial length, corneal curvature, and anterior chamber depth measurements of 2 recently introduced devices to a known biometer. Am J Ophthalmol. 2017; 178:58–64. doi:
10.1016/j.ajo.2017.02.027 28263734 > Crossref MedlineGoogle Scholar - 20. . Comparison of repeatability and agreement between swept-source optical biometry and dual-Scheimpflug topography. J Ophthalmol. 2017; 2017:1516395. doi:
10.1155/2017/1516395 > Crossref MedlineGoogle Scholar - 21. . Repeatability of ocular biometry with IOLMaster 700 in subjects with clear lens. Int Ophthalmol. 2017; 37(5):1133–1138. doi:
10.1007/s10792-016-0380-7 > Crossref MedlineGoogle Scholar - 22. . An evaluation of the IOL-Master 700. Eye Contact Lens. 2019; 45(2):117–123. doi:
10.1097/ICL.0000000000000552 > Crossref MedlineGoogle Scholar - 23. . Comparison of anterior segment measurements obtained using a swept-source optical coherence tomography biometer and a Scheimpflug-Placido tomographer. J Cataract Refract Surg. 2019; 45(3):298–304. doi:
10.1016/j.jcrs.2018.10.033 30851806 > Crossref MedlineGoogle Scholar - 24. . Repeatability assessment of biometric measurements with different refractive states and age using a swept-source biometer. Expert Rev Med Devices. 2019; 16(1):63–69. doi:
10.1080/17434440.2019.1557517 > Crossref MedlineGoogle Scholar - 25. . Reliability of a new swept-source optical coherence tomography biometer in healthy children, adults, and cataract patients. J Ophthalmol. 2020; 2020:8946364. doi:
10.1155/2020/8946364 32509343 > Crossref MedlineGoogle Scholar - 26. . Repeatability and agreement of a swept-source optical coherence tomography-based biometer IOLMaster 700 versus a Scheimpflug imaging-based biometer AL-Scan in cataract patients. Eye Contact Lens. 2020; 46(1):35–45. doi:
10.1097/ICL.0000000000000603 > Crossref MedlineGoogle Scholar - 27. . Scheimpflug-Placido topographer and optical low-coherence reflectometry biometer: repeatability and agreement. J Cataract Refract Surg. 2012; 38(9):1626–1632. doi:
10.1016/j.jcrs.2012.04.031 22763002 > Crossref MedlineGoogle Scholar - 28. . Repeatability and reproducibility of biometry and keratometry measurements using a noncontact optical low-coherence reflectometer and keratometer. Am J Ophthalmol. 2012; 153(1):55–61.e2. doi:
10.1016/j.ajo.2011.06.012 > Crossref MedlineGoogle Scholar - 29. . Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes. Clin Exp Optom. 2013; 96(1):92–99. doi:
10.1111/j.1444-0938.2012.00793.x > Crossref MedlineGoogle Scholar - 30. . Comparison of a new Scheimpflug imaging combined with partial coherence interferometry biometer and a low-coherence reflectometry biometer. J Cataract Refract Surg. 2017; 43(11):1406–1412. doi:
10.1016/j.jcrs.2017.08.016 29223229 > Crossref MedlineGoogle Scholar - 31. . Repeatability and agreement of ocular biometry measurements: Aladdin versus Lenstar. Br J Ophthalmol. 2017; 101(9):1223–1229. doi:
10.1136/bjophthalmol-2016-309365 28130351 > Crossref MedlineGoogle Scholar - 32. . Evaluation of a new optical biometry device for measurements of ocular components and its comparison with IOLMaster. Br J Ophthalmol. 2014; 98(9):1277–1281. doi:
10.1136/bjophthalmol-2014-305150 24795336 > Crossref MedlineGoogle Scholar - 33. . Comparison of ocular biometry and intraocular lens power using a new biometer and a standard biometer. J Cataract Refract Surg. 2014; 40(5):709–715. doi:
10.1016/j.jcrs.2013.09.020 24656166 > Crossref MedlineGoogle Scholar - 34. . Repeatability and reproducibility of a new optical biometer in normal and keratoconic eyes. J Cataract Refract Surg. 2015; 41(1):171–177. doi:
10.1016/j.jcrs.2014.04.039 > Crossref MedlineGoogle Scholar - 35. . Repeatability and interob-server reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOLMaster. Br J Ophthalmol. 2017; 101(4):493–498. doi:
10.1136/bjophthalmol-2016-308352 > Crossref MedlineGoogle Scholar - 36. . Precision (repeatability and reproducibility) of ocular parameters obtained by the Tomey OA-2000 biometer compared to the IOLMaster in healthy eyes. PLoS One. 2018; 13(2):e0193023. doi:
10.1371/journal.pone.0193023 29486009 > Crossref MedlineGoogle Scholar - 37. . Effect of orthokeratology on precision and agreement assessment of a new swept-source optical coherence tomography biometer. Eye Vis (Lond). 2020; 7(1):13. doi:
10.1186/s40662-020-00177-4 > Crossref MedlineGoogle Scholar - 38. . Ocular biometric repeatability using a new high-resolution swept-source optical coherence tomographer. Expert Rev Med Devices. 2020; 17(6):591–597. doi:
10.1080/17434440.2020.1772050 32425075 > Crossref MedlineGoogle Scholar - 39. . Repeatability of automated measurements by a new anterior segment optical coherence tomographer and biometer and agreement with standard devices. Sci Rep. 2021; 11(1):983. doi:
10.1038/s41598-020-79674-4 33441703 > Crossref MedlineGoogle Scholar - 40. . Evaluating refractive outcomes after cataract surgery. Ophthalmology. 2019; 126(1):13–18. doi:
10.1016/j.ophtha.2018.07.009 > Crossref MedlineGoogle Scholar - 41. . Keratometry versus total corneal refractive power: analysis of measurement repeatability with 5 different devices in normal eyes with low astigmatism. J Cataract Refract Surg. 2016; 42(4):569–576. doi:
10.1016/j.jcrs.2015.11.046 27113880 > Crossref MedlineGoogle Scholar