Skip to main content
Journal of Refractive Surgery, 2023;39(9):639–646

Abstract

Purpose:

To describe an approach using sequential excimer laser ablation of the stromal surface of the corneal flap with or without subsequent excimer ablation to the stromal bed to reduce presbyopic inlay–associated corneal haze.

Methods:

Twelve patients who underwent KAMRA inlay (Acufocus) explantation due to corneal haze were included. The mean interval between explantation and the primary surgery (phototherapeutic keratotomy [PTK] to corneal flap) was 16.2 ± 29.7 months (range = 1 to 83 months). The corneal flap was lifted and laid on an evisceration spoon and an excimer laser was used to ablate the flap stroma by 30 to 40 µm depth. Subsequently, an excimer laser was used to ablate and treat the stromal bed following a second flap lift according to the manifest refraction, leaving a minimal residual stromal bed thickness of greater than 300 µm. For both procedures, mitomycin C 0.02% was applied to the stromal bed before the flap was replaced and a bandage contact lens applied.

Results:

Reductions in corneal haze were observed, following PTK to the corneal flap with or without photorefractive keratectomy (PRK) to the stromal bed, both clinically and on imaging. No significant changes in uncorrected distance visual acuity (P = .442) and corrected distance visual acuity (P = .565) were observed. Improvements were observed for both spherical equivalent refractive errors (P = .036) and corneal light backscatter (P = .019). There were significant improvements in spherical aberrations (P = .014) but no changes in total lower and higher order aberrations.

Conclusions:

PTK to the corneal flap with or without subsequent stromal bed PRK is an effective technique in treating corneal haze following presbyopic inlay explantation.

[J Refract Surg. 2023;39(9):639–646.]

  • 1.Ahn JH, Kim DH, Shyn KH. Investigation of the changes in refractive surgery trends in Korea. Korean J Ophthalmol. 2018; 32(1):8–15. 10.3341/kjo.2017.0010 PMID:29376229

    > Crossref MedlineGoogle Scholar
  • 2.Zare Mehrjerdi MA, Mohebbi M, Zandian M. Review of static approaches to surgical correction of presbyopia. J Ophthalmic Vis Res. 2017; 12(4):413–418. 10.4103/jovr.jovr_162_16 PMID:29090052

    > Crossref MedlineGoogle Scholar
  • 3.Wolffsohn JS, Davies LN. Presbyopia: effectiveness of correction strategies. Prog Retin Eye Res. 2019; 68:124–143. 10.1016/j.preteyeres.2018.09.004 PMID:30244049

    > Crossref MedlineGoogle Scholar
  • 4.Konstantopoulos A, Mehta JS. Surgical compensation of presbyopia with corneal inlays. Expert Rev Med Devices. 2015; 12(3):341–352. 10.1586/17434440.2015.1007124 PMID:25652889

    > Crossref MedlineGoogle Scholar
  • 5.Lindstrom RL, Macrae SM, Pepose JS, Hoopes PC. Corneal inlays for presbyopia correction. Curr Opin Ophthalmol. 2013; 24(4):281–287. 10.1097/ICU.0b013e328362293e PMID:23703461

    > Crossref MedlineGoogle Scholar
  • 6.Tomita M, Kanamori T, Waring GO, Nakamura T, Yukawa S. Small-aperture corneal inlay implantation to treat presbyopia after laser in situ keratomileusis. J Cataract Refract Surg. 2013; 39(6):898–905. 10.1016/j.jcrs.2013.01.034 PMID:23688876

    > Crossref MedlineGoogle Scholar
  • 7.Han G, Lim DH, Yang CMet al.. Refractive corneal inlay for presbyopia in emmetropic patients in Asia: 6-month clinical outcomes. BMC Ophthalmol. 2019; 19(1):66. 10.1186/s12886-019-1069-2 PMID:30836950

    > Crossref MedlineGoogle Scholar
  • 8.Naroo SA, Bilkhu PS. Clinical utility of the KAMRA corneal inlay. Clin Ophthalmol. 2016; 10:913–919. 10.2147/OPTH.S89132 PMID:27274194

    > Crossref MedlineGoogle Scholar
  • 9.Vukich JA, Durrie DS, Pepose JS, Thompson V, van de Pol C, Lin L. Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. Food and Drug Administration clinical trial. J Cataract Refract Surg. 2018; 44(5):541–556. 10.1016/j.jcrs.2018.02.023 PMID:29759685

    > Crossref MedlineGoogle Scholar
  • 10.Binder PS. Intracorneal inlays for the correction of presbyopia. Eye Contact Lens. 2017; 43(5):267–275. 10.1097/ICL.0000000000000381 PMID:28617724

    > Crossref MedlineGoogle Scholar
  • 11.Yilmaz ÖF, Alagöz N, Pekel Get al.. Intracorneal inlay to correct presbyopia: long-term results. J Cataract Refract Surg. 2011; 37(7):1275–1281. 10.1016/j.jcrs.2011.01.027 PMID:21570249

    > Crossref MedlineGoogle Scholar
  • 12.Fenner BJ, Liu Y-C, Koh SKet al.. Mediators of corneal haze following implantation of presbyopic corneal inlays. Invest Ophthalmol Vis Sci. 2019; 60(4):868–876. 10.1167/iovs.18-25761 PMID:30821812

    > Crossref MedlineGoogle Scholar
  • 13.Ong HS, Chan AS, Yau CW, Mehta JS. Corneal inlays for presbyopia explanted due to corneal haze. J Refract Surg. 2018; 34(5):357–360. 10.3928/1081597X-20180308-01 PMID:29738595

    > LinkGoogle Scholar
  • 14.Romito N, Basli E, Goemaere I, Borderie V, Laroche L, Bouheraoua N. Persistent corneal fibrosis after explantation of a small-aperture corneal inlay. J Cataract Refract Surg. 2019; 45(3):367–371. 10.1016/j.jcrs.2018.11.003 PMID:30584010

    > Crossref MedlineGoogle Scholar
  • 15.Mulet ME, Alio JL, Knorz MC. Hydrogel intracorneal inlays for the correction of hyperopia: outcomes and complications after 5 years of follow-up. Ophthalmology. 2009; 116(8):1455–1460.e1.

    > Crossref MedlineGoogle Scholar
  • 16.Fenner BJ, Moriyama AS, Mehta JS. Inlays and the cornea. Exp Eye Res. 2021; 205:108474. 10.1016/j.exer.2021.108474 PMID:33524364

    > Crossref MedlineGoogle Scholar
  • 17.Lee KJ. UPDATED TO FDA CLASS 1 DEVICE RECALL: Raindrop Near Vision Inlay may raise risk of corneal haze. November 16, 2018. Updated November 9, 2019. Accessed November 16, 2021. https://www.aao.org/headline/fda-alert-raindrop-near-vision-inlay-may-raise-ris

    > Google Scholar
  • 18.Taneri S, Kiessler S, Rost A, Schultz T, Dick HB. Flap melting over corneal inlay for hyperopic correction. J Refract Surg. 2018; 34(11):775–778. 10.3928/1081597X-20180823-01 PMID:30428098

    > LinkGoogle Scholar
  • 19.Bach M, Schulze-Bonsel K, Feltgen N, Burau H, Hansen L. Author response: numerical imputation for low vision states. (eLetter). Invest Ophthalmol Vis Sci. Published January 1, 2007.

    > Google Scholar
  • 20.Lange C, Feltgen N, Junker B, Schulze-Bonsel K, Bach M. Resolving the clinical acuity categories “hand motion” and “counting fingers” using the Freiburg Visual Acuity Test (FrACT). Graefes Arch Clin Exp Ophthalmol. 2009; 247(1):137–142. 10.1007/s00417-008-0926-0 PMID:18766368

    > Crossref MedlineGoogle Scholar
  • 21.Schulze-Bonsel K, Feltgen N, Burau H, Hansen L, Bach M. Visual acuities “hand motion” and “counting fingers” can be quantified with the freiburg visual acuity test. Invest Ophthalmol Vis Sci. 2006; 47(3):1236–1240. 10.1167/iovs.05-0981 PMID:16505064

    > Crossref MedlineGoogle Scholar
  • 22.Moshirfar M, Henrie MK, Payne CJet al.. Review of presbyopia treatment with corneal inlays and new developments. Clin Ophthalmol. 2022; 16:2781–2795. 10.2147/OPTH.S375577 PMID:36042913

    > Crossref MedlineGoogle Scholar
  • 23.Thornton I, Puri A, Xu M, Krueger RR. Low-dose mitomycin C as a prophylaxis for corneal haze in myopic surface ablation. Am J Ophthalmol. 2007; 144(5):673–681.e1. 10.1016/j.ajo.2007.07.020

    > Crossref MedlineGoogle Scholar
  • 24.Gambato C, Ghirlando A, Moretto E, Busato F, Midena E. Mitomycin C modulation of corneal wound healing after photorefractive keratectomy in highly myopic eyes. Ophthalmology. 2005; 112(2):208–218. 10.1016/j.ophtha.2004.07.035 PMID:15691552

    > Crossref MedlineGoogle Scholar
  • 25.Carones F, Vigo L, Scandola E, Vacchini L. Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy. J Cataract Refract Surg. 2002; 28(12):2088–2095. 10.1016/S0886-3350(02)01701-7 PMID:12498842

    > Crossref MedlineGoogle Scholar
  • 26.Hashemi H, Pakbin M, Pakravan Met al.. Effect of short versus long-term steroid on corneal haze after photorefractive keratectomy: a randomized, double-masked clinical trial. Am J Ophthalmol. 2022; 235:211–220. 10.1016/j.ajo.2021.09.028 PMID:34624248

    > Crossref MedlineGoogle Scholar
  • 27.Carlos de Oliveira R, Wilson SE. Biological effects of mitomycin C on late corneal haze stromal fibrosis following PRK. Exp Eye Res. 2020; 200:108218. 10.1016/j.exer.2020.108218 PMID:32905844

    > Crossref MedlineGoogle Scholar
  • 28.Nien CJ, Flynn KJ, Chang M, Brown D, Jester JV. Reducing peak corneal haze after photorefractive keratectomy in rabbits: prednisolone acetate 1.00% versus cyclosporine A 0.05%. J Cataract Refract Surg. 2011; 37(5):937–944. 10.1016/j.jcrs.2010.11.035 PMID:21406325

    > Crossref MedlineGoogle Scholar
  • 29.Chu R, Lee BR. Diagnostic and management tool for monitoring patients implanted with a shape-changing corneal inlay. Case Rep Ophthalmol. 2018; 9(1):190–196. 10.1159/000484436 PMID:29681835

    > Crossref MedlineGoogle Scholar
  • 30.Antonios R, Jabbur NS, Ahmed MA, Awwad ST. Refractory interface haze developing after epithelial ingrowth following laser in situ keratomileusis and small aperture corneal inlay implantation. Am J Ophthalmol Case Rep. 2018; 10:10–12. 10.1016/j.ajoc.2018.01.034 PMID:29780903

    > Crossref MedlineGoogle Scholar
  • 31.Paley GL, Harocopos GJ. Histopathologic analysis of explanted KAMRA corneal inlays demonstrating adherent fibroconnective tissue scar formation. Ocul Oncol Pathol. 2019; 5(6):440–444. 10.1159/000498944 PMID:31768368

    > Crossref MedlineGoogle Scholar
  • 32.Gartry DS, Muir MG, Lohmann CP, Marshall J. The effect of topical corticosteroids on refractive outcome and corneal haze after photorefractive keratectomy. A prospective, randomized, double-blind trial. Arch Ophthalmol. 1992; 110(7):944–952. 10.1001/archopht.1992.01080190050028 PMID:1637279

    > Crossref MedlineGoogle Scholar
  • 33.Raviv T, Majmudar PA, Dennis RF, Epstein RJ. Mytomycin-C for post-PRK corneal haze. J Cataract Refract Surg. 2000; 26(8):1105–1106. 10.1016/S0886-3350(00)00625-8 PMID:11041724

    > Crossref MedlineGoogle Scholar
  • 34.Moshirfar M, Skanchy DF, Rosen DBet al.. Visual prognosis after explantation of small-aperture corneal inlays in presbyopic eyes: a case series. Med Hypothesis Discov Innov Ophthalmol. 2019; 8(3):129–133. PMID:31598513

    > MedlineGoogle Scholar
  • 35.Astin CL, Gartry DS, McG Steele AD. Contact lens fitting after photorefractive keratectomy. Br J Ophthalmol. 1996; 80(7):597–603. 10.1136/bjo.80.7.597 PMID:8795370

    > Crossref MedlineGoogle Scholar
  • 36.Ghosh S, Mutalib HA, Sharanjeet-Kaur , Ghoshal R, Retnasabapathy S. Effects of contact lens wearing on keratoconus: a confocal microscopy observation. Int J Ophthalmol. 2017; 10(2):228–234. 10.18240/ijo.2017.02.08 PMID:28251081

    > Crossref MedlineGoogle Scholar
  • 37.Alipour F, Khaheshi S, Soleimanzadeh M, Heidarzadeh S, Heydarzadeh S. Contact lens-related complications: a review. J Ophthalmic Vis Res. 2017; 12(2):193–204. 10.4103/jovr.jovr_159_16 PMID:28540012

    > Crossref MedlineGoogle Scholar
  • 38.Moffatt SL, Cartwright VA, Stumpf TH. Centennial review of corneal transplantation. Clin Exp Ophthalmol. 2005; 33(6):642–657. 10.1111/j.1442-9071.2005.01134.x PMID:16402960

    > Crossref MedlineGoogle Scholar
  • 39.Tan DT, Dart JK, Holland EJ, Kinoshita S. Corneal transplantation. Lancet. 2012; 379(9827):1749–1761. 10.1016/S0140-6736(12)60437-1 PMID:22559901

    > Crossref MedlineGoogle Scholar
  • 40.Dexl AK, Jell G, Strohmaier Cet al.. Long-term outcomes after monocular corneal inlay implantation for the surgical compensation of presbyopia. J Cataract Refract Surg. 2015; 41(3):566–575. 10.1016/j.jcrs.2014.05.051 PMID:25726504

    > Crossref MedlineGoogle Scholar
  • 41.Moshirfar M, Walker BD, Linn SH, Birdsong OC, Hoopes PC. Optimal pocket depth for corneal inlays. J Refract Surg. 2018; 34(4):288–288. 10.3928/1081597X-20180209-01 PMID:29634846

    > LinkGoogle Scholar
  • 42.Riau AK, Ang HP, Lwin NC, Chaurasia SS, Tan DT, Mehta JS. Comparison of four different VisuMax circle patterns for flap creation after small incision lenticule extraction. J Refract Surg. 2013; 29(4):236–244. 10.3928/1081597X-20130318-02 PMID:23557221

    > LinkGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×