Surgical Technique to Treat Presbyopic Inlay-Associated Corneal Haze With Sequential Excimer Photoablation: A Case Series
Abstract
Purpose:
To describe an approach using sequential excimer laser ablation of the stromal surface of the corneal flap with or without subsequent excimer ablation to the stromal bed to reduce presbyopic inlay–associated corneal haze.
Methods:
Twelve patients who underwent KAMRA inlay (Acufocus) explantation due to corneal haze were included. The mean interval between explantation and the primary surgery (phototherapeutic keratotomy [PTK] to corneal flap) was 16.2 ± 29.7 months (range = 1 to 83 months). The corneal flap was lifted and laid on an evisceration spoon and an excimer laser was used to ablate the flap stroma by 30 to 40 µm depth. Subsequently, an excimer laser was used to ablate and treat the stromal bed following a second flap lift according to the manifest refraction, leaving a minimal residual stromal bed thickness of greater than 300 µm. For both procedures, mitomycin C 0.02% was applied to the stromal bed before the flap was replaced and a bandage contact lens applied.
Results:
Reductions in corneal haze were observed, following PTK to the corneal flap with or without photorefractive keratectomy (PRK) to the stromal bed, both clinically and on imaging. No significant changes in uncorrected distance visual acuity (P = .442) and corrected distance visual acuity (P = .565) were observed. Improvements were observed for both spherical equivalent refractive errors (P = .036) and corneal light backscatter (P = .019). There were significant improvements in spherical aberrations (P = .014) but no changes in total lower and higher order aberrations.
Conclusions:
PTK to the corneal flap with or without subsequent stromal bed PRK is an effective technique in treating corneal haze following presbyopic inlay explantation.
[J Refract Surg. 2023;39(9):639–646.]
- 1. . Investigation of the changes in refractive surgery trends in Korea. Korean J Ophthalmol. 2018; 32(1):8–15.
10.3341/kjo.2017.0010 PMID:29376229 > Crossref MedlineGoogle Scholar - 2. . Review of static approaches to surgical correction of presbyopia. J Ophthalmic Vis Res. 2017; 12(4):413–418.
10.4103/jovr.jovr_162_16 PMID:29090052 > Crossref MedlineGoogle Scholar - 3. . Presbyopia: effectiveness of correction strategies. Prog Retin Eye Res. 2019; 68:124–143.
10.1016/j.preteyeres.2018.09.004 PMID:30244049 > Crossref MedlineGoogle Scholar - 4. . Surgical compensation of presbyopia with corneal inlays. Expert Rev Med Devices. 2015; 12(3):341–352.
10.1586/17434440.2015.1007124 PMID:25652889 > Crossref MedlineGoogle Scholar - 5. . Corneal inlays for presbyopia correction. Curr Opin Ophthalmol. 2013; 24(4):281–287.
10.1097/ICU.0b013e328362293e PMID:23703461 > Crossref MedlineGoogle Scholar - 6. . Small-aperture corneal inlay implantation to treat presbyopia after laser in situ keratomileusis. J Cataract Refract Surg. 2013; 39(6):898–905.
10.1016/j.jcrs.2013.01.034 PMID:23688876 > Crossref MedlineGoogle Scholar - 7. . Refractive corneal inlay for presbyopia in emmetropic patients in Asia: 6-month clinical outcomes. BMC Ophthalmol. 2019; 19(1):66.
10.1186/s12886-019-1069-2 PMID:30836950 > Crossref MedlineGoogle Scholar - 8. . Clinical utility of the KAMRA corneal inlay. Clin Ophthalmol. 2016; 10:913–919.
10.2147/OPTH.S89132 PMID:27274194 > Crossref MedlineGoogle Scholar - 9. . Evaluation of the small-aperture intracorneal inlay: three-year results from the cohort of the U.S. Food and Drug Administration clinical trial. J Cataract Refract Surg. 2018; 44(5):541–556.
10.1016/j.jcrs.2018.02.023 PMID:29759685 > Crossref MedlineGoogle Scholar - 10. . Intracorneal inlays for the correction of presbyopia. Eye Contact Lens. 2017; 43(5):267–275.
10.1097/ICL.0000000000000381 PMID:28617724 > Crossref MedlineGoogle Scholar - 11. . Intracorneal inlay to correct presbyopia: long-term results. J Cataract Refract Surg. 2011; 37(7):1275–1281.
10.1016/j.jcrs.2011.01.027 PMID:21570249 > Crossref MedlineGoogle Scholar - 12. . Mediators of corneal haze following implantation of presbyopic corneal inlays. Invest Ophthalmol Vis Sci. 2019; 60(4):868–876.
10.1167/iovs.18-25761 PMID:30821812 > Crossref MedlineGoogle Scholar - 13. . Corneal inlays for presbyopia explanted due to corneal haze. J Refract Surg. 2018; 34(5):357–360.
10.3928/1081597X-20180308-01 PMID:29738595 > LinkGoogle Scholar - 14. . Persistent corneal fibrosis after explantation of a small-aperture corneal inlay. J Cataract Refract Surg. 2019; 45(3):367–371.
10.1016/j.jcrs.2018.11.003 PMID:30584010 > Crossref MedlineGoogle Scholar - 15. . Hydrogel intracorneal inlays for the correction of hyperopia: outcomes and complications after 5 years of follow-up. Ophthalmology. 2009; 116(8):1455–1460.e1. > Crossref MedlineGoogle Scholar
- 16. . Inlays and the cornea. Exp Eye Res. 2021; 205:108474.
10.1016/j.exer.2021.108474 PMID:33524364 > Crossref MedlineGoogle Scholar - 17. . UPDATED TO FDA CLASS 1 DEVICE RECALL: Raindrop Near Vision Inlay may raise risk of corneal haze. November 16, 2018. Updated November 9, 2019. Accessed November 16, 2021. https://www.aao.org/headline/fda-alert-raindrop-near-vision-inlay-may-raise-ris > Google Scholar
- 18. . Flap melting over corneal inlay for hyperopic correction. J Refract Surg. 2018; 34(11):775–778.
10.3928/1081597X-20180823-01 PMID:30428098 > LinkGoogle Scholar - 19. . Author response: numerical imputation for low vision states. (eLetter). Invest Ophthalmol Vis Sci. Published January 1, 2007. > Google Scholar
- 20. . Resolving the clinical acuity categories “hand motion” and “counting fingers” using the Freiburg Visual Acuity Test (FrACT). Graefes Arch Clin Exp Ophthalmol. 2009; 247(1):137–142.
10.1007/s00417-008-0926-0 PMID:18766368 > Crossref MedlineGoogle Scholar - 21. . Visual acuities “hand motion” and “counting fingers” can be quantified with the freiburg visual acuity test. Invest Ophthalmol Vis Sci. 2006; 47(3):1236–1240.
10.1167/iovs.05-0981 PMID:16505064 > Crossref MedlineGoogle Scholar - 22. . Review of presbyopia treatment with corneal inlays and new developments. Clin Ophthalmol. 2022; 16:2781–2795.
10.2147/OPTH.S375577 PMID:36042913 > Crossref MedlineGoogle Scholar - 23. . Low-dose mitomycin C as a prophylaxis for corneal haze in myopic surface ablation. Am J Ophthalmol. 2007; 144(5):673–681.e1.
10.1016/j.ajo.2007.07.020 > Crossref MedlineGoogle Scholar - 24. . Mitomycin C modulation of corneal wound healing after photorefractive keratectomy in highly myopic eyes. Ophthalmology. 2005; 112(2):208–218.
10.1016/j.ophtha.2004.07.035 PMID:15691552 > Crossref MedlineGoogle Scholar - 25. . Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy. J Cataract Refract Surg. 2002; 28(12):2088–2095.
10.1016/S0886-3350(02)01701-7 PMID:12498842 > Crossref MedlineGoogle Scholar - 26. . Effect of short versus long-term steroid on corneal haze after photorefractive keratectomy: a randomized, double-masked clinical trial. Am J Ophthalmol. 2022; 235:211–220.
10.1016/j.ajo.2021.09.028 PMID:34624248 > Crossref MedlineGoogle Scholar - 27. . Biological effects of mitomycin C on late corneal haze stromal fibrosis following PRK. Exp Eye Res. 2020; 200:108218.
10.1016/j.exer.2020.108218 PMID:32905844 > Crossref MedlineGoogle Scholar - 28. . Reducing peak corneal haze after photorefractive keratectomy in rabbits: prednisolone acetate 1.00% versus cyclosporine A 0.05%. J Cataract Refract Surg. 2011; 37(5):937–944.
10.1016/j.jcrs.2010.11.035 PMID:21406325 > Crossref MedlineGoogle Scholar - 29. . Diagnostic and management tool for monitoring patients implanted with a shape-changing corneal inlay. Case Rep Ophthalmol. 2018; 9(1):190–196.
10.1159/000484436 PMID:29681835 > Crossref MedlineGoogle Scholar - 30. . Refractory interface haze developing after epithelial ingrowth following laser in situ keratomileusis and small aperture corneal inlay implantation. Am J Ophthalmol Case Rep. 2018; 10:10–12.
10.1016/j.ajoc.2018.01.034 PMID:29780903 > Crossref MedlineGoogle Scholar - 31. . Histopathologic analysis of explanted KAMRA corneal inlays demonstrating adherent fibroconnective tissue scar formation. Ocul Oncol Pathol. 2019; 5(6):440–444.
10.1159/000498944 PMID:31768368 > Crossref MedlineGoogle Scholar - 32. . The effect of topical corticosteroids on refractive outcome and corneal haze after photorefractive keratectomy. A prospective, randomized, double-blind trial. Arch Ophthalmol. 1992; 110(7):944–952.
10.1001/archopht.1992.01080190050028 PMID:1637279 > Crossref MedlineGoogle Scholar - 33. . Mytomycin-C for post-PRK corneal haze. J Cataract Refract Surg. 2000; 26(8):1105–1106.
10.1016/S0886-3350(00)00625-8 PMID:11041724 > Crossref MedlineGoogle Scholar - 34. . Visual prognosis after explantation of small-aperture corneal inlays in presbyopic eyes: a case series. Med Hypothesis Discov Innov Ophthalmol. 2019; 8(3):129–133. PMID:
31598513 > MedlineGoogle Scholar - 35. . Contact lens fitting after photorefractive keratectomy. Br J Ophthalmol. 1996; 80(7):597–603.
10.1136/bjo.80.7.597 PMID:8795370 > Crossref MedlineGoogle Scholar - 36. . Effects of contact lens wearing on keratoconus: a confocal microscopy observation. Int J Ophthalmol. 2017; 10(2):228–234.
10.18240/ijo.2017.02.08 PMID:28251081 > Crossref MedlineGoogle Scholar - 37. . Contact lens-related complications: a review. J Ophthalmic Vis Res. 2017; 12(2):193–204.
10.4103/jovr.jovr_159_16 PMID:28540012 > Crossref MedlineGoogle Scholar - 38. . Centennial review of corneal transplantation. Clin Exp Ophthalmol. 2005; 33(6):642–657.
10.1111/j.1442-9071.2005.01134.x PMID:16402960 > Crossref MedlineGoogle Scholar - 39. . Corneal transplantation. Lancet. 2012; 379(9827):1749–1761.
10.1016/S0140-6736(12)60437-1 PMID:22559901 > Crossref MedlineGoogle Scholar - 40. . Long-term outcomes after monocular corneal inlay implantation for the surgical compensation of presbyopia. J Cataract Refract Surg. 2015; 41(3):566–575.
10.1016/j.jcrs.2014.05.051 PMID:25726504 > Crossref MedlineGoogle Scholar - 41. . Optimal pocket depth for corneal inlays. J Refract Surg. 2018; 34(4):288–288.
10.3928/1081597X-20180209-01 PMID:29634846 > LinkGoogle Scholar - 42. . Comparison of four different VisuMax circle patterns for flap creation after small incision lenticule extraction. J Refract Surg. 2013; 29(4):236–244.
10.3928/1081597X-20130318-02 PMID:23557221 > LinkGoogle Scholar