Skip to main content
Journal of Refractive Surgery, 2024;40(3):e148–e155

Abstract

Purpose:

To assess the safety and efficacy of treatment and secondarily determine the topographic changes, visual outcomes, and demarcation line depth after high-fluence pulsed light accelerated cross-linking (ACXL) in pediatric patients (younger than 18 years) with progressive keratoconus.

Methods:

This retrospective analysis included 32 eyes (25 children, aged 11 to 18 years), with progressive keratoconus treated with high-energy epithelium-off pulsed light ACXL (7.2 J/cm2, 15 mW/cm2, 12 minutes, 2 seconds on/1 second off). Corrected distance visual acuity (CDVA), Scheimpflug tomography, and anterior optical coherence tomography measurements were recorded preoperatively and 1, 2, and 3 years postoperatively.

Results:

A total of 32 eyes were included. Significant CDVA improvement, pachymetry, and maximum keratometry reduction were found at all follow-up visits. Mean keratometric values remained stable, and astigmatism showed a mild worsening (< 0.25 D) with statistical significance at 1 and 3 years. Total aberration showed discordant results and coma aberration had a slight improvement without statistical significance. The demarcation line depth was 265 ± 26 μm. Three patients developed mild haze without visual acuity loss. None of the patients underwent a second CXL procedure.

Conclusions:

In pediatric patients, high-fluence epithelium-off pulsed light ACXL appears to be a safe and effective procedure to halt the progression of keratoconus, slightly improving the CDVA and keratometric values.

[J Refract Surg. 2024;40(3):e148–e155.]

  • 1.Kankariya VP, Kymionis GD, Diakonis VF, Yoo SH. Management of pediatric keratoconus: evolving role of corneal collagen cross-linking: an update. Indian J Ophthalmol. 2013; 61(8):435–440. 10.4103/0301-4738.116070 PMID:23925333

    > Crossref MedlineGoogle Scholar
  • 2.Tuft SJ, Moodaley LC, Gregory WM, Davison CR, Buckley RJ. Prognostic factors for the progression of keratoconus. Ophthalmology. 1994; 101(3):439–447. 10.1016/S0161-6420(94)31313-3 PMID:8127564

    > Crossref MedlineGoogle Scholar
  • 3.Ferdi AC, Nguyen V, Gore DM, Allan BD, Rozema JJ, Watson SL. Keratoconus natural progression: a systematic review and meta-analysis of 11,529 eyes. Ophthalmology. 2019; 126(7):935–945. 10.1016/j.ophtha.2019.02.029 PMID:30858022

    > Crossref MedlineGoogle Scholar
  • 4.Léoni-Mesplié S, Mortemousque B, Touboul Det al.. Scalability and severity of keratoconus in children. Am J Ophthalmol. 2012; 154(1):56–62.e1. 10.1016/j.ajo.2012.01.025 PMID:22534107

    > Crossref MedlineGoogle Scholar
  • 5.Beltaief O, Farah H, Kamoun R, Ben Said A, Ouertani A. [Penetrating keratoplasty in children]. Tunis Med. 2003; 81(7):477–481. PMID:14534958

    > MedlineGoogle Scholar
  • 6.Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003; 135(5):620–627. 10.1016/S0002-9394(02)02220-1 PMID:12719068

    > Crossref MedlineGoogle Scholar
  • 7.Wen D, Li Q, Song Bet al.. Comparison of standard versus accelerated corneal collagen cross-linking for keratoconus: a meta-analysis. Invest Ophthalmol Vis Sci. 2018; 59(10):3920–3931. 10.1167/iovs.18-24656 PMID:30073363

    > Crossref MedlineGoogle Scholar
  • 8.Schumacher S, Oeftiger L, Mrochen M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci. 2011; 52(12):9048–9052. 10.1167/iovs.11-7818 PMID:22025568

    > Crossref MedlineGoogle Scholar
  • 9.Hashemian H, Jabbarvand M, Khodaparast M, Ameli K. Evaluation of corneal changes after conventional versus accelerated corneal cross-linking: a randomized controlled trial. J Refract Surg. 2014; 30(12):837–842. 10.3928/1081597X-20141117-02 PMID:25437483

    > LinkGoogle Scholar
  • 10.Eissa SA, Yassin A. Prospective, randomized contralateral eye study of accelerated and conventional corneal cross-linking in pediatric keratoconus. Int Ophthalmol. 2019; 39(5):971–979. 10.1007/s10792-018-0898-y PMID:29564806

    > Crossref MedlineGoogle Scholar
  • 11.Kandel H, Nguyen V, Ferdi ACet al.. Comparative efficacy and safety of standard versus accelerated corneal crosslinking for keratoconus: 1-year outcomes from the Save Sight Keratoconus Registry Study. Cornea. 2021; 40(12):1581–1589. 10.1097/ICO.0000000000002747 PMID:33935236

    > Crossref MedlineGoogle Scholar
  • 12.Turhan SA, Yargi B, Toker E. Efficacy of conventional versus accelerated corneal cross-linking in pediatric keratoconus: two-year outcomes. J Refract Surg. 2020; 36(4):265–269. 10.3928/1081597X-20200302-01 PMID:32267958

    > LinkGoogle Scholar
  • 13.Randleman JB, Khandelwal SS, Hafezi F. Corneal cross-linking. Surv Ophthalmol. 2015; 60(6):509–523. 10.1016/j.survophthal.2015.04.002 PMID:25980780

    > Crossref MedlineGoogle Scholar
  • 14.Mazzotta C, Traversi C, Caragiuli S, Rechichi M. Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye (Lond). 2014; 28(10):1179–1183. 10.1038/eye.2014.163 PMID:25060847

    > Crossref MedlineGoogle Scholar
  • 15.Tzamalis A, Vinciguerra R, Romano V, Arbabi E, Batterbury M, Kaye SB. Intraobserver reproducibility and interobserver agreement of demarcation line depth measurements following corneal cross linking. Eur J Ophthalmol. 2020; 30(4):635–642. 10.1177/1120672119835116 PMID:30857417

    > Crossref MedlineGoogle Scholar
  • 16.Iqbal M, Elmassry A, Saad Het al.. Standard cross-linking protocol versus accelerated and transepithelial cross-linking protocols for treatment of paediatric keratoconus: a 2-year comparative study. Acta Ophthalmol. 2020; 98(3):e352–e362. 10.1111/aos.14275 PMID:31654497

    > Crossref MedlineGoogle Scholar
  • 17.Mukhtar S, Ambati BK. Pediatric keratoconus: a review of the literature. Int Ophthalmol. 2018; 38(5):2257–2266. 10.1007/s10792-017-0699-8 PMID:28852910

    > Crossref MedlineGoogle Scholar
  • 18.Polido J, Dos Xavier Santos Araújo ME, Alexander JG, Cabral T, Ambrósio R, Freitas D. Pediatric crosslinking: current protocols and approach. Ophthalmol Ther. 2022; 11(3):983–999. 10.1007/s40123-022-00508-9 PMID:35482230

    > Crossref MedlineGoogle Scholar
  • 19.Mazzotta C, Traversi C, Paradiso AL, Latronico ME, Rechichi M. Pulsed light accelerated crosslinking versus continuous light accelerated crosslinking: one-year results. J Ophthalmol. 2014; 2014:604731. 10.1155/2014/604731 PMID:25165576

    > Crossref MedlineGoogle Scholar
  • 20.Peyman A, Nouralishahi A, Hafezi F, Kling S, Peyman M. Stromal demarcation line in pulsed versus continuous light accelerated corneal cross-linking for keratoconus. J Refract Surg. 2016; 32(3):206–208. doi:10.3928/1081597X-20160204-03.

    > LinkGoogle Scholar
  • 21.Jiang LZ, Jiang W, Qiu SY. Conventional vs. pulsed-light accelerated corneal collagen cross-linking for the treatment of progressive keratoconus: 12-month results from a prospective study. Exp Ther Med. 2017; 14(5):4238–4244. 10.3892/etm.2017.5031 PMID:29067107

    > Crossref MedlineGoogle Scholar
  • 22.Kang MJ, Hwang J, Chung SH. Comparison of pulsed and continuous accelerated corneal crosslinking for keratoconus: 1-year results at a single center. J Cataract Refract Surg. 2021; 47(5):641–648. 10.1097/j.jcrs.0000000000000488 PMID:33196569

    > Crossref MedlineGoogle Scholar
  • 23.Moramarco A, Iovieno A, Sartori A, Fontana L. Corneal stromal demarcation line after accelerated crosslinking using continuous and pulsed light. J Cataract Refract Surg. 2015; 41(11):2546–2551. 10.1016/j.jcrs.2015.04.033 PMID:26703505

    > Crossref MedlineGoogle Scholar
  • 24.Li Y, Lu Y, Du Ket al.. Comparison of efficacy and safety between standard. accelerated epithelium-off and transepithelial corneal collagen crosslinking in pediatric keratoconus: a meta-analysis. Front Med (Lausanne). 2022; 9:787167. doi:10.3389/fmed.2022.787167

    > Crossref MedlineGoogle Scholar
  • 25.Wen D, Song B, Li Qet al.. Comparison of epithelium-off versus transepithelial corneal collagen cross-linking for keratoconus: a systematic review and meta-analysis. Cornea. 2018; 37(8):1018–1024. 10.1097/ICO.0000000000001632 PMID:29847492

    > Crossref MedlineGoogle Scholar
  • 26.Iqbal M, Gad A, Kotb A, Abdelhalim M. Analysis of the outcomes of three different cross-linking protocols for treatment of paediatric keratoconus: A multicentre randomized controlled trial. Acta Ophthalmol. 2024; 102(1):e105–e116. 10.1111/aos.15686 PMID:37140143

    > Crossref MedlineGoogle Scholar
  • 27.Mazzotta C, Traversi C, Baiocchi Set al.. Corneal collagen cross-linking with riboflavin and ultraviolet a light for pediatric keratoconus: ten-year results. Cornea. 2018; 37(5):560–566. 10.1097/ICO.0000000000001505 PMID:29319598

    > Crossref MedlineGoogle Scholar
  • 28.Chatzis N, Hafezi F. Progression of keratoconus and efficacy of pediatric [corrected] corneal collagen cross-linking in children and adolescents. J Refract Surg. 2012; 28(11):753–758. 10.3928/1081597X-20121011-01 PMID:23347367

    > LinkGoogle Scholar
  • 29.Vinciguerra P, Albé E, Frueh BE, Trazza S, Epstein D. Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. Am J Ophthalmol. 2012; 154(3):520–526. 10.1016/j.ajo.2012.03.020 PMID:22633357

    > Crossref MedlineGoogle Scholar
  • 30.Ozgurhan EB, Kara N, Cankaya KI, Kurt T, Demirok A. Accelerated corneal cross-linking in pediatric patients with keratoconus: 24-month outcomes. J Refract Surg. 2014; 30(12):843–849. 10.3928/1081597X-20141120-01 PMID:25437484

    > LinkGoogle Scholar
  • 31.Badawi AE. Accelerated corneal collagen cross-linking in pediatric keratoconus: one year study. Saudi J Ophthalmol. 2017; 31(1):11–18. 10.1016/j.sjopt.2017.01.002 PMID:28337057

    > Crossref MedlineGoogle Scholar
  • 32.Agca A, Tülü B, Yasa Det al.. Accelerated corneal crosslinking in children with keratoconus: 5-year results and comparison of 2 protocols. J Cataract Refract Surg. 2020; 46(4):517–523. 10.1097/j.jcrs.0000000000000101 PMID:32271294

    > Crossref MedlineGoogle Scholar
  • 33.Shetty R, Nagaraja H, Jayadev C, Pahuja NK, Kurian Kummelil M, Nuijts RMMA. Accelerated corneal collagen cross-linking in pediatric patients: two-year follow-up results. BioMed Res Int. 2014; 2014:894095. 10.1155/2014/894095 PMID:25295278

    > Crossref MedlineGoogle Scholar
  • 34.Sadoughi MM, Einollahi B, Baradaran-Rafii A, Roshandel D, Hasani H, Nazeri M. Accelerated versus conventional corneal collagen cross-linking in patients with keratoconus: an intra-patient comparative study. Int Ophthalmol. 2018; 38(1):67–74. 10.1007/s10792-016-0423-0 PMID:28035498

    > Crossref MedlineGoogle Scholar
  • 35.Sarac O, Caglayan M, Uysal BS, Uzel AGT, Tanriverdi B, Cagil N. Accelerated versus standard corneal collagen cross-linking in pediatric keratoconus patients: 24 months follow-up results. Cont Lens Anterior Eye. 2018; 41(5):442–447. 10.1016/j.clae.2018.06.001 PMID:29910023

    > Crossref MedlineGoogle Scholar
  • 36.Buzzonetti L, Petrocelli G. Transepithelial corneal cross-linking in pediatric patients: early results. J Refract Surg. 2012; 28(11):763–767. 10.3928/1081597X-20121011-03 PMID:23347369

    > LinkGoogle Scholar
  • 37.Henriquez MA, Hernandez-Sahagun G, Camargo J, Izquierdo L. Accelerated epi-on versus standard epi-off corneal collagen cross-linking for progressive keratoconus in pediatric patients: five years of follow-up. Cornea. 2020; 39(12):1493–1498. 10.1097/ICO.0000000000002463 PMID:32796273

    > Crossref MedlineGoogle Scholar
  • 38.Eraslan M, Toker E, Cerman E, Ozarslan D. Efficacy of epithelium-off and epithelium-on corneal collagen cross-linking in pediatric keratoconus. Eye Contact Lens. 2017; 43(3):155–161. 10.1097/ICL.0000000000000255 PMID:26925536

    > Crossref MedlineGoogle Scholar
  • 39.Antonios R, Fattah MA, Maalouf F, Abiad B, Awwad ST. Central corneal thickness after cross-linking using high-definition optical coherence tomography, ultrasound, and dual scheimpflug tomography: a comparative study over one year. Am J Ophthalmol. 2016; 167:38–47. 10.1016/j.ajo.2016.04.004 PMID:27084001

    > Crossref MedlineGoogle Scholar
  • 40.Amer I, Elaskary A, Mostafa A, Hazem HA, Omar A, Abdou A. Long-term visual, refractive and topographic outcomes of “epioff” corneal collagen cross-linking in pediatric keratoconus: standard versus accelerated protocol. Clin Ophthalmol. 2020; 14:3747–3754. 10.2147/OPTH.S275797 PMID:33177802

    > Crossref MedlineGoogle Scholar
  • 41.Kim J, Whang WJ, Kim HS. Analysis of total corneal astigmatism with a rotating Scheimpflug camera in keratoconus. BMC Ophthalmol. 2020; 20(1):475. 10.1186/s12886-020-01747-9 PMID:33272234

    > Crossref MedlineGoogle Scholar
  • 42.Choi Y, Eom Y, Song JS, Kim HM. Comparison of anterior, posterior, and total corneal astigmatism measured using a single Scheimpflug camera in healthy and keratoconus eyes. Korean J Ophthalmol. 2018; 32(3):163–171. 10.3341/kjo.2017.0075 PMID:29770640

    > Crossref MedlineGoogle Scholar
  • 43.Wadhwa H, Gokul A, Li Yet al.. Repeatability of Scheimpflug based corneal tomography parameters in advanced keratoconus with thin corneas. Eye (Lond). 2023; 37(16):3429–3434. 10.1038/s41433-023-02528-6 PMID:37076688

    > Crossref MedlineGoogle Scholar
  • 44.Peyman A, Nouralishahi A, Hafezi F, Kling S, Peyman M. Stromal demarcation line in pulsed versus continuous light accelerated corneal cross-linking for keratoconus. J Refract Surg. 2016; 32(3):206–208. 10.3928/1081597X-20160204-03 PMID:27027629

    > LinkGoogle Scholar
  • 45.Xanthopoulou K, Milioti G, Daas L, Munteanu C, Seitz B, Flockerzi E. Accelerated corneal crosslinking for treatment of keratoconus in children and adolescents under 18 years of age. Klin Monbl Augenheilkd. 2023; 240(10):1131–1142. 10.1055/a-1933-3084 PMID:36436508

    > Crossref MedlineGoogle Scholar
  • 46.Hammer A, Richoz O, Arba Mosquera S, Tabibian D, Hoogewoud F, Hafezi F. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014; 55(5):2881–2884. 10.1167/iovs.13-13748 PMID:24677109

    > Crossref MedlineGoogle Scholar
  • 47.Bao F, Zheng Y, Liu Cet al.. Changes in corneal biomechanical properties with different corneal cross-linking irradiances. J Refract Surg. 2018; 34(1):51–58. 10.3928/1081597X-20171025-01 PMID:29315442

    > LinkGoogle Scholar
  • 48.Mazzotta C, Romani A, Burroni A. Pachymetry-based accelerated crosslinking: the “M nomogram” for standardized treatment of all-thickness progressive ectatic corneas. Int J Keratoconus Ectatic Corneal Dis. 2018; 7(2):137–144. 10.5005/jp-journals-10025-1171

    > CrossrefGoogle Scholar
  • 49.Seiler TG, Komninou MA, Nambiar MH, Schuerch K, Frueh BE, Büchler P. Oxygen kinetics during corneal cross-linking with and without supplementary oxygen. Am J Ophthalmol. 2021; 223:368–376. 10.1016/j.ajo.2020.11.001 PMID:33227242

    > Crossref MedlineGoogle Scholar
  • 50.Lin JT. A proposed concentration-controlled new protocol for optimal corneal crosslinking efficacy in the anterior stroma. Invest Ophthalmol Vis Sci. 2018; 59(1):431–432. 10.1167/iovs.17-23414 PMID:29365149

    > Crossref MedlineGoogle Scholar
  • 51.Lang PZ, Hafezi NL, Khandelwal SS, Torres-Netto EA, Hafezi F, Randleman JB. Comparative functional outcomes after corneal crosslinking using standard, accelerated, and accelerated with higher total fluence protocols. Cornea. 2019; 38(4):433–441. 10.1097/ICO.0000000000001878 PMID:30681515

    > Crossref MedlineGoogle Scholar
  • 52.Omar Yousif M, Elkitkat RS, Abdelsadek Alaarag N, Moustafa Seleet M, Hassan Soliman A. Comparison between pulsed and continuous accelerated corneal cross-linking protocols. Clin Ophthalmol. 2023; 17:1407–1413. 10.2147/OPTH.S409178 PMID:37214154

    > Crossref MedlineGoogle Scholar
  • 53.Liu Y, Shen D, Wang HY, Liang DF, Zeng QY. Independent-effect comparison of five crosslinking procedures for progressive keratoconus based on keratometry and the ABCD Grading System using generalized estimating equations (GEE). BMC Ophthalmol. 2023; 23(1):16. 10.1186/s12886-022-02744-w PMID:36627585

    > Crossref MedlineGoogle Scholar
  • 54.Abrishamchi R, Abdshahzadeh H, Hillen Met al.. High-fluence accelerated epithelium-off corneal cross-linking protocol provides Dresden protocol-like corneal strengthening. Transl Vis Sci Technol. 2021; 10(5):10. 10.1167/tvst.10.5.10 PMID:34542574

    > Crossref MedlineGoogle Scholar
  • 55.Fischinger I, Reifeltshammer SA, Seiler TGet al.. Analysis of biomechanical response after corneal crosslinking with different fluence levels in porcine corneas. Curr Eye Res. 2023; 48(8):719–723. 10.1080/02713683.2023.2205612 PMID:37144469

    > Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×