Skip to main content
Journal of Refractive Surgery, 2024;40(3):e182–e194
Cite this articlePublished Online:https://doi.org/10.3928/1081597X-20240212-02Cited by:1

Abstract

Purpose:

To provide an up-to-date review of the agreement in automated white-to-white (WTW) measurement between the latest topographic and biometric devices.

Methods:

In this systematic review, PubMed, Web of Science, and Scopus databases were searched for articles published between 2017 and 2023, focusing on WTW agreement studies on adult, virgin eyes, with or without cataract and no other ocular comorbidities. Studies evaluating WTW measurements performed with autokeratometers, manual calipers, or manual image analysis were excluded. When available, the following metrics for the agreement of WTW measurements between pairs of devices were included: mean difference ± standard deviation, 95% limits of agreement (LoA), LoA width, 95% confidence interval (95 CI%), and intraclass correlation coefficient (ICC).

Results:

Forty-one studies, covering comparisons for 19 devices, were included. Altogether, 81 paired comparisons were performed for 4,595 eyes of 4,002 individuals. The mean difference in WTW measurements between devices ranged from 0.01 mm up to 0.96 mm, with varying CI. The 95% LoA width ranged from 0.31 to 2.45 mm (median: 0.65 mm). The majority of pairwise comparisons reported LoA wider than 0.5 mm, a clinically significant value for phakic intraocular lens sizing.

Conclusions:

Nearly all analyzed studies demonstrated the lack of interchangeability of the WTW parameter. The corneal diameter, assessed by means of grayscale en-face image analysis, tended to demonstrate the lowest agreement among devices compared to other measured biometric parameters.

[J Refract Surg. 2024;40(3):e182–e194.]

  • 1.Baumeister M, Terzi E, Ekici Y, Kohnen T. Comparison of manual and automated methods to determine horizontal corneal diameter. J Cataract Refract Surg. 2004; 30(2):374–380. PMID:15030827 10.1016/j.jcrs.2003.06.004

    > Crossref MedlineGoogle Scholar
  • 2.Domínguez-Vicent A, Pérez-Vives C, Ferrer-Blasco T, García-Lázaro S, Montés-Micó R. Device interchangeability on anterior chamber depth and white-to-white measurements: a thorough literature review. Int J Ophthalmol. 2016;18; 9(7):1057–1065. 10.18240/ijo.2016.07.20. PMID: 27500117; PMCID: PMC4951663

    > Crossref MedlineGoogle Scholar
  • 3.Muzyka-Wozniak M, Oleszko A, Strózecki L, Wozniak S. The corneo-scleral junction assessed with optical coherence tomography. PLoS One. 2022; 17(12):e0278884. 10.1371/journal.pone.0278884 PMID:36490278

    > Crossref MedlineGoogle Scholar
  • 4.Montés-Micó R, Pastor-Pascual F, Ruiz-Mesa R, Tañá-Rivero P. Ocular biometry with swept-source optical coherence tomography. J Cataract Refract Surg. 2021; 47(6):802–814. 10.1097/j.jcrs.0000000000000551 PMID:33315731

    > Crossref MedlineGoogle Scholar
  • 5.Wang Y, Wan T, Liu Let al.. Agreement between a new optical low coherence reflectometry biometer and an anterior segment optical coherence tomographer. Eye Vis (Lond). 2023; 10(1):13. 10.1186/s40662-023-00330-9 PMID:36829259

    > Crossref MedlineGoogle Scholar
  • 6.Bowyer KW, Burge MJ, eds. Handbook of Iris Recognition. Springer London; 2016.

    > CrossrefGoogle Scholar
  • 7.Bergmanson JP, Martinez JG. Size does matter: what is the corneo-limbal diameter? Clin Exp Optom. 2017; 100(5):522–528. 10.1111/cxo.12583 PMID:28868754

    > Crossref MedlineGoogle Scholar
  • 8.Consejo A, Llorens-Quintana C, Radhakrishnan H, Iskander DR. Mean shape of the human limbus. J Cataract Refract Surg. 2017; 43(5):667–672. 10.1016/j.jcrs.2017.02.027 PMID:28602330

    > Crossref MedlineGoogle Scholar
  • 9.Heidelberg Engineering GmbH. ANTERION® Hardware Manual Article No. 230031-009 INT.AE22. January 2022. Downloaded from www.Manualslib.com manuals search engine

    > Google Scholar
  • 10.Montés-Micó R. Evaluation of 6 biometers based on different optical technologies. J Cataract Refract Surg. 2022; 48(1):16–25. 10.1097/j.jcrs.0000000000000690 PMID:34091551

    > Crossref MedlineGoogle Scholar
  • 11.Topcon. ALADDIN–User manual Rev. 23. Downloaded 08/07/2016 from www.Manualslib.com manuals search engine

    > Google Scholar
  • 12.ATLAS User Manual 2660021143529 Rev. C 2015-10

    > Google Scholar
  • 13.Tañá-Rivero P, Aguilar-Córcoles S, Rodríguez-Prats JL, Montés-Micó R, Ruiz-Mesa R. Agreement of white-to-white measurements with swept-source OCT, Scheimpflug and color LED devices. Int Ophthalmol. 2021; 41(1):57–65. 10.1007/s10792-020-01552-9 PMID:32860152

    > Crossref MedlineGoogle Scholar
  • 14.Haag Streit AG. Instructions For Use Biometer EYESTAR 900¨ 3. Edition/2023–01. HS-Doc. no. 1500.7220686-04030–2023–01.

    > Google Scholar
  • 15.Ziemer Ophthalmic Systems AG. GALILEI G4 Operator Manual. Doc. No. CM3941-0081-03. 2016.

    > Google Scholar
  • 16.Carl Zeiss Meditec AG. User manual IOLMaster 700; Software version 1.90 Documentation set. 000000-1932-169-GA-en-GB-280122. 2022.

    > Google Scholar
  • 17.Instructions For Use Biometer Lenstar LS 900® 10. Edition/2015–06. 01-IFU_LS900-7220055-04100_eng.indd 1. Downloaded from www.Manualslib.com manuals search engine

    > Google Scholar
  • 18.Shin MC, Chung SY, Hwang HS, Han KE. Comparison of two optical biometers. Optom Vis Sci. 2016; 93(3):259–265. pmid:26760579 10.1097/OPX.0000000000000799

    > Crossref MedlineGoogle Scholar
  • 19.INSTRUCTION MANUAL Multifunction Unit MR-600028AA9090-10

    > Google Scholar
  • 20.Costruzione Strumenti Oftalmici. MS-39 AS-OCT. Instructions for Use. IFU302EN00–03/2019. www.csoitalia.it

    > Google Scholar
  • 21.Instruction Manual Pentacam® AXL (G/70100/EN 1121 Rev04)

    > Google Scholar
  • 22.Costruzione Strumenti Oftalmici. Corneal Topograph/Tomograph Sirius+ Instructions For Use. IFU327EN00–01/2021. www.csoitalia.it

    > Google Scholar
  • 23.Yu J, Zhao G, Lei CSet al.. Repeatability and reproducibility of a new fully automatic measurement optical low coherence reflectometry biometer and agreement with swept-source optical coherence tomography-based biometer. Published online ahead of print May 4, 2023. Br J Ophthalmol. 10.1136/bjo-2023-323268 PMID:37142332

    > Crossref MedlineGoogle Scholar
  • 24.Bao T, Yin L, Liu Cet al.. Agreement of anterior segment measurements between LenStar LS 900 optical biometer and OPD Scan III wavefront aberrometer devices in eyes with cataract. Photodiagnosis Photodyn Ther. 2023; 41:103207. 10.1016/j.pdpdt.2022.103207 PMID:36414150

    > Crossref MedlineGoogle Scholar
  • 25.Cho YJ, Lim TH, Choi KY, Cho BJ. Comparison of ocular biometry using new swept-source optical coherence tomography-based optical biometer with other devices. Korean J Ophthalmol. 2018; 32(4):257–264. 10.3341/kjo.2017.0091 PMID:30091303

    > Crossref MedlineGoogle Scholar
  • 26.Kim BY, Jun I. Comparison of anterior segment measurements with a new multifunctional unit and five other devices. Korean J Ophthalmol. 2022; 36(4):338–349. 10.3341/kjo.2022.0025 PMID:35766048

    > Crossref MedlineGoogle Scholar
  • 27.Nonpassopon M, Jongkhajornpong P, Phimpho P, Cheewaruangroj N, Lekhanont K, Chuckpaiwong V. Agreement of implantable collamer lens sizes using parameters from different devices. BMJ Open Ophthalmol. 2022; 7(1):e000941. 10.1136/bmjophth-2021-000941 PMID:35372697

    > Crossref MedlineGoogle Scholar
  • 28.Sabatino F, Matarazzo F, Findl O, Maurino V. Comparative analysis of 2 swept-source optical coherence tomography biometers. J Cataract Refract Surg. 2019; 45(8):1124–1129. 10.1016/j.jcrs.2019.03.020 PMID:31174987

    > Crossref MedlineGoogle Scholar
  • 29.Savini G, Lupardi E, Hoffer KJ, Aramberri J, Schiano-Lomoriello D. Corneal diameter measurements by 3 optical biometers and their effect on phakic intraocular lens sizing. J Cataract Refract Surg. 2022; 48(11):1292–1296. 10.1097/j.jcrs.0000000000000976 PMID:35616506

    > Crossref MedlineGoogle Scholar
  • 30.Sorkin N, Achiron A, Abumanhal Met al.. Comparison of two new integrated SS-OCT tomography and biometry devices. J Cataract Refract Surg. 2022; 48(11):1277–1284. 10.1097/j.jcrs.0000000000000974 PMID:35608316

    > Crossref MedlineGoogle Scholar
  • 31.Sorkin N, Zadok T, Barrett GD, Chasid O, Abulafia A. Comparison of biometry measurements and intraocular lens power prediction between 2 SS-OCT-based biometers. J Cataract Refract Surg. 2023; 49(5):460–466. 10.1097/j.jcrs.0000000000001146 PMID:36719441

    > Crossref MedlineGoogle Scholar
  • 32.Asawaworarit R, Satitpitakul V, Taweekitikul P, Pongpirul K. Agreement of total corneal power between 2 swept-source optical coherence tomography and Scheimpflug tomography in normal and keratoconic patients. PLoS One. 2022; 17(5):e0268856. 10.1371/journal.pone.0268856 PMID:35609043

    > Crossref MedlineGoogle Scholar
  • 33.Cruz S, Valenzuela F, Stoppel J, Maul E, Gibbons A. Comparison of horizontal corneal diameter measurements using Orbscan IIz, OPD Scan III, and IOLMaster 700. Eye Contact Lens. 2021; 47(10):533–538. 10.1097/ICL.0000000000000786 PMID:33900214

    > Crossref MedlineGoogle Scholar
  • 34.Oleszko AA, Marek JJ, Muzyka-Wozniak MM. Horizontal and anterior chamber diameter for phakic intraocular lens sizing. Clin Exp Optom. 2021; 104(1):62–68. 10.1111/cxo.13101 PMID:32519362

    > Crossref MedlineGoogle Scholar
  • 35.Tañá-Rivero P, Aguilar-Córcoles S, Tello-Elordi C, Pastor-Pascual F, Montés-Micó R. Agreement between 2 swept-source OCT biometers and a Scheimpflug partial coherence interferometer. J Cataract Refract Surg. 2021; 47(4):488–495. 10.1097/j.jcrs.0000000000000483 PMID:33252569

    > Crossref MedlineGoogle Scholar
  • 36.Tañá-Sanz P, Ruiz-Santos M, Rodríguez-Carrillo MD, Aguilar-Córcoles S, Montés-Micó R, Tañá-Rivero P. Agreement between intraoperative anterior segment spectral-domain OCT and 2 swept-source OCT biometers. Expert Rev Med Devices. 2021; 18(4):387–393. 10.1080/17434440.2021.1905518 PMID:33730515

    > Crossref MedlineGoogle Scholar
  • 37.Buckenham Boyle A, Namkung S, Shew W, Gokul A, McGhee CNJ, Ziaei M. Repeatability and agreement of white-to-white measurements between slit-scanning tomography, infrared biometry, dual rotating Scheimpflug camera/Placido disc tomography, and swept source anterior segment optical coherence tomography. PLoS One. 2021; 16(7):e0254832. 10.1371/journal.pone.0254832 PMID:34270605

    > Crossref MedlineGoogle Scholar
  • 38.Ferrer-Blasco T, Esteve-Taboada JJ, Martínez-Albert N, Alfonso JF, Montés-Micó R. Agreement of white-to-white measurements with the IOLMaster 700, Atlas 9000, and Sirius systems. Expert Rev Med Devices. 2018; 15(6):453–459. 10.1080/17434440.2018.1481745 PMID:29806949

    > Crossref MedlineGoogle Scholar
  • 39.Namkung S, Boyle AB, Li Y, Gokul A, McGhee C, Ziaei M. Repeatability and agreement of horizontal corneal diameter measurements between scanning-slit topography, dual rotating Scheimpflug camera with Placido disc tomography, Placido disc topography, and optical coherence tomography. Cornea. 2022; 41(11):1392–1397. 10.1097/ICO.0000000000002964 PMID:34935660

    > Crossref MedlineGoogle Scholar
  • 40.Salouti R, Nowroozzadeh MH, Tajbakhsh Zet al.. Agreement of corneal diameter measurements obtained by a swept-source biometer and a Scheimpflug-based topographer. Cornea. 2017; 36(11):1373–1376. 10.1097/ICO.0000000000001300 PMID:28834818

    > Crossref MedlineGoogle Scholar
  • 41.Bao T, Wang L, Liu C, Yang Y, Pang Y. Analysis of biometric parameters of cataract eyes measured with optical biometer Lenstar LS900, IOL Master 700, and OPD-SCAN III. Photodiagnosis Photodyn Ther. 2023; 43:103646. 10.1016/j.pdpdt.2023.103646 PMID:37271487

    > Crossref MedlineGoogle Scholar
  • 42.Calvo-Sanz JA, Poyales F, Zhou Y, Arias-Puente A, Garzón N. Agreement between the biometric measurements used to calculate the size of the implantable collamer lenses measured with four different technologies. Indian J Ophthalmol. 2022; 70(5):1586–1592. 10.4103/ijo.IJO_2217_21 PMID:35502031

    > Crossref MedlineGoogle Scholar
  • 43.Chen S, Zhang Q, Savini Get al.. Comparison of a new optical biometer that combines Scheimpflug imaging with partial coherence interferometry with that of an optical biometer based on swept-source optical coherence tomography and Placido-disk topography. Front Med (Lausanne). 2022; 8:814519. 10.3389/fmed.2021.814519 PMID:35223885

    > Crossref MedlineGoogle Scholar
  • 44.Galzignato A, Lupardi E, Hoffer KJ, Barboni P, Schiano-Lomoriello D, Savini G. Repeatability of new optical biometer and agreement with 2 validated optical biometers, all based on SS-OCT. J Cataract Refract Surg. 2023; 49(1):5–10. 10.1097/j.jcrs.0000000000001023 PMID:36026703

    > Crossref MedlineGoogle Scholar
  • 45.McAlinden C, Gao R, Yu Aet al.. Repeatability and agreement of ocular biometry measurements: Aladdin versus Lenstar. Br J Ophthalmol. 2017; 101(9):1223–1229. 10.1136/bjophthalmol-2016-309365 PMID:28130351

    > Crossref MedlineGoogle Scholar
  • 46.Panda A, Nanda A, Sahoo K. Comparison of ocular biometry and refractive outcome between ANTERION and IOL Master 700. Indian J Ophthalmol. 2022; 70(5):1594–1598. 10.4103/ijo.IJO_2433_21 PMID:35502033

    > Crossref MedlineGoogle Scholar
  • 47.Panthier C, Rouger H, Gozlan Y, Moran S, Gatinel D. Comparative analysis of 2 biometers using swept-source OCT technology. J Cataract Refract Surg. 2022; 48(1):26–31. 10.1097/j.jcrs.0000000000000704 PMID:34034291

    > Crossref MedlineGoogle Scholar
  • 48.Pfaeffli OA, Weber A, Hoffer KJet al.. Agreement of intraocular lens power calculation between 2 SS-OCT-based biometers. J Cataract Refract Surg. 2022; 48(5):535–541. 10.1097/j.jcrs.0000000000000788 PMID:34417784

    > Crossref MedlineGoogle Scholar
  • 49.Supiyaphun C, Rattanasiri S, Jongkhajornpong P. Comparison of anterior segment parameters and axial length using two Scheimpflug devices with integrated optical biometers. Clin Ophthalmol. 2020; 14:3487–3494. 10.2147/OPTH.S278701 PMID:33122885

    > Crossref MedlineGoogle Scholar
  • 50.Tu R, Yu J, Savini Get al.. Agreement between two optical biometers based on large coherence length SS-OCT and Scheimpflug imaging/partial coherence interferometry. J Refract Surg. 2020; 36(7):459–465. 10.3928/1081597X-20200420-02 PMID:32644168

    > LinkGoogle Scholar
  • 51.El Chehab H, Agard E, Dot C. Comparison of two biometers: A swept-source optical coherence tomography and an optical low-coherence reflectometry biometer. Eur J Ophthalmol. 2019; 29(5):547–554. 10.1177/1120672118802918 PMID:30295063

    > Crossref MedlineGoogle Scholar
  • 52.Liao X, Peng Y, Liu B, Tan QQ, Lan CJ. Agreement of ocular biometric measurements in young healthy eyes between IOL-Master 700 and OA-2000. Sci Rep. 2020; 10(1):3134. 10.1038/s41598-020-59919-y PMID:32081868

    > Crossref MedlineGoogle Scholar
  • 53.Lu W, Li Y, Savini Get al.. Comparison of anterior segment measurements obtained using a swept-source optical coherence tomography biometer and a Scheimpflug-Placido tomographer. J Cataract Refract Surg. 2019; 45(3):298–304. 10.1016/j.jcrs.2018.10.033 PMID:30851806

    > Crossref MedlineGoogle Scholar
  • 54.Hashemi H, Miraftab M, Panahi P, Asgari S. Biometry and intraocular power calculation using a swept-source optical coherence tomography: A repeatability and agreement study. Indian J Ophthalmol. 2022; 70(8):2845–2850. 10.4103/ijo.IJO_249_22 PMID:35918927

    > Crossref MedlineGoogle Scholar
  • 55.Chan TCY, Wan KH, Tang FY, Wang YM, Yu M, Cheung C. Repeatability and agreement of a swept-source optical coherence tomography-based biometer IOLMaster 700 versus a Scheimpflug imaging-based biometer AL-scan in cataract patients. Eye Contact Lens. 2020; 46(1):35–45. 10.1097/ICL.0000000000000603 PMID:30985487

    > Crossref MedlineGoogle Scholar
  • 56.McLintock C, Niyazmand H, Seo Set al.. Agreement between a new swept-source ocular coherence tomography and a Placido disc-dual Scheimpflug ocular biometric devices. Published online ahead of print December 7, 2022. Eur J Ophthalmol. 10.1177/11206721221143160 PMID:36475915

    > Crossref MedlineGoogle Scholar
  • 57.McLintock C, Niyazmand H, Seo S, Barrett G, Nilagiri VK, McKelvie J. Agreement between 2 SS-OCT biometry devices. J Cataract Refract Surg. 2022; 48(10):1107–1112. 10.1097/j.jcrs.0000000000000942 PMID:35333792

    > Crossref MedlineGoogle Scholar
  • 58.Gao R, Chen H, Savini Get al.. Comparison of ocular biometric measurements between a new swept-source optical coherence tomography and a common optical low coherence reflectometry. Sci Rep. 2017; 7(1):2484. 10.1038/s41598-017-02463-z

    > Crossref MedlineGoogle Scholar
  • 59.Yeu E. Agreement of ocular biometry measurements between 2 biometers. J Cataract Refract Surg. 2019; 45(8):1130–1134. 10.1016/j.jcrs.2019.03.016 PMID:31279621

    > Crossref MedlineGoogle Scholar
  • 60.Gharieb HM, Shalaby HS, Othman IS. Repeatability and interchangeability of topometric, anterior chamber and corneal wavefront data between two Scheimpflug camera devices. Clin Ophthalmol. 2020; 14:3801–3810. 10.2147/OPTH.S274303 PMID:33177806

    > Crossref MedlineGoogle Scholar
  • 61.Yun JS, Min JS, Kim KY. Evaluation of angle-to-angle and spur-to-spur using swept source optical coherence tomography in different refractive error. PLoS One. 2022; 17(11):e0277703. 10.1371/journal.pone.0277703

    > Crossref MedlineGoogle Scholar
  • 62.Dong J, Yao J, Chang S, Kanclerz P, Khoramnia R, Wang X. Evaluation of ocular diameter parameters using swept-source optical coherence tomography. Medicina (Kaunas). 2023; 59(5):899. 10.3390/medicina59050899

    > Crossref MedlineGoogle Scholar
  • 63.Taechameekietichai T, Nguyen A, Chansangpetch S, Lin SC. Displacement between anterior chamber width obtained by swept-source anterior segment optical coherence tomography and white-to-white distance. PLoS One. 2021; 16(5):e0251990. 10.1371/journal.pone.0251990

    > Crossref MedlineGoogle Scholar
  • 64.Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015; 49:1–16. 10.1016/j.preteyeres.2015.07.001 PMID:26145225

    > Crossref MedlineGoogle Scholar
  • 65.Consejo A, Jiménez-García M, Rozema JJ, Abass A. Influence of eye tilt on corneal densitometry. Ophthalmic Physiol Opt. 2022; 42(5):1032–1037. 10.1111/opo.13020 PMID:35708180

    > Crossref MedlineGoogle Scholar
  • 66.Wendelstein JA, Rothbächer J, Heath Met al.. Influence and predictive value of optional parameters in new-generation intraocular lens formulas. J Cataract Refract Surg. 2023; 49(8):795–803. 10.1097/j.jcrs.0000000000001207 PMID:37097284

    > Crossref MedlineGoogle Scholar
  • 67.Oleszko A, Marek J, Muzyka-Wozniak M. Application of a partial least squares regression algorithm for posterior chamber phakic intraocular lens sizing and postoperative vault prediction. J Refract Surg. 2020; 36(9):606–612. 10.3928/1081597X-20200630-01 PMID:32901828

    > LinkGoogle Scholar
  • 68.Dougherty PJ, Rivera RP, Schneider D, Lane SS, Brown D, Vukich J. Improving accuracy of phakic intraocular lens sizing using high-frequency ultrasound biomicroscopy. J Cataract Refract Surg. 2011; 37(1):13–18. 10.1016/j.jcrs.2010.07.014 PMID:21050711

    > Crossref MedlineGoogle Scholar
  • 69.Montés-Micó R, Tañá-Rivero P, Aguilar-Córcoles S, Ruíz-Mesa R. Assessment of anterior segment measurements using a high-resolution imaging device. Expert Rev Med Devices. 2020; 17(9):969–979. 10.1080/17434440.2020.1816463 PMID:32847426

    > Crossref MedlineGoogle Scholar
  • 70.Montés-Micó R, Tañá-Rivero P, Aguilar-Córcoles S, Ruiz-Santos M, Rodríguez-Carrillo MD, Ruiz-Mesa R. Angle-to-angle and spur-to-spur distance analysis with high-resolution optical coherence tomography. Eye Vis (Lond). 2020; 7:42. 10.1186/s40662-020-00208-0

    > Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×