Abstract
Optical coherence tomography (OCT) has transformed diagnostic ophthalmic imaging but until recently has been limited to the clinic setting. The development of spectral-domain OCT (SD-OCT), with its improved speed and resolution, along with the development of a handheld OCT scanner, enabled portable imaging of patients unable to sit in a conventional tabletop scanner. This handheld SD-OCT unit has proven useful in examinations under anesthesia and, more recently, in intraoperative imaging of preoperative and postoperative manipulations. Recently, several groups have pioneered the development of novel OCT modalities, such as microscope-mounted OCT systems. Although still immature, the development of these systems is directed toward real-time imaging of surgical maneuvers in the intraoperative setting. This article reviews intraoperative imaging of the posterior and anterior segment using the handheld SD-OCT and recent advances toward real-time microscope-mounted intrasurgical imaging.
- 1.Huang D, Swanson EA, Lin CP, Optical coherence tomography. Science. 1991; 254:1178–1181.
10.1126/science.1957169 > Crossref MedlineGoogle Scholar - 2.Gabriele ML, Wollstein G, Ishikawa H, Three dimensional optical coherence tomography imaging: advantages and advances. Prog Retin Eye Res. 2010; 29:556–579.
10.1016/j.preteyeres.2010.05.005 > Crossref MedlineGoogle Scholar - 3.Schuman JS, Hee MR, Arya AV, Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol. 1995; 6:89–95. > Crossref MedlineGoogle Scholar
- 4.Izatt JA, Hee MR, Swanson EA, Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994; 112:1584–1589. > Crossref MedlineGoogle Scholar
- 5.Hoerauf H, Gordes RS, Scholz C, First experimental and clinical results with transscleral optical coherence tomography. Ophthalmic Surg Lasers. 2000; 31:218–222. > LinkGoogle Scholar
- 6.Mueller M, Schulz-Wackerbarth C, Steven P, Slit-lamp-adapted fourier-domain OCT for anterior and posterior segments: preliminary results and comparison to time-domain OCT. Curr Eye Res. 2010; 35:722–732.
10.3109/02713683.2010.481069 > Crossref MedlineGoogle Scholar - 7.Gallemore RP, Jumper JM, McCuen BW, Jaffe GJ, Postel EA, Toth CA. Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography. Retina. 2000; 20:115–120.
10.1097/00006982-200002000-00002 > Crossref MedlineGoogle Scholar - 8.Chung EJ, Lew YJ, Lee H, Koh HJ. OCT-guided hyaloid release for vitreomacular traction syndrome. Korean J Ophthalmol. 2008; 22:169–173.
10.3341/kjo.2008.22.3.169 > Crossref MedlineGoogle Scholar - 9.Hee MR, Puliafito CA, Wong C, Optical coherence tomography of macular holes. Ophthalmology. 1995; 102:748–756. > Crossref MedlineGoogle Scholar
- 10.Jumper JM, Gallemore RP, McCuen BW, Toth CA. Features of macular hole closure in the early postoperative period using optical coherence tomography. Retina. 2000; 20:232–237.
10.1097/00006982-200003000-00002 > Crossref MedlineGoogle Scholar - 11.Ma JJ, Tseng SS, Yarascavitch BA. Anterior segment optical coherence tomography for transepithelial phototherapeutic keratectomy in central corneal stromal scarring. Cornea. 2009; 28:927–929.
10.1097/ICO.0b013e3181930b9f > Crossref MedlineGoogle Scholar - 12.Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography: a review. Clin Experiment Ophthalmol. 2009; 37:81–89.
10.1111/j.1442-9071.2008.01823.x > Crossref MedlineGoogle Scholar - 13.Maldonado MJ, Ruiz-Oblitas L, Munuera JM, Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. Ophthalmology. 2000; 107:81–87.
10.1016/S0161-6420(99)00022-6 > Crossref MedlineGoogle Scholar - 14.Li Y, Netto MV, Shekhar R, Krueger RR, Huang D. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. Ophthalmology. 2007; 114:1124–1132.
10.1016/j.ophtha.2006.09.031 > Crossref MedlineGoogle Scholar - 15.Skarmoutsos F, Sandhu SS, Voros GM, Shafiq A. The use of optical coherence tomography in the management of cystoid macular edema in pediatric uveitis. J AAPOS. 2006; 10:173–174.
10.1016/j.jaapos.2005.08.008 > Crossref MedlineGoogle Scholar - 16.Shields CL, Mashayekhi A, Luo CK, Materin MA, Shields JA. Optical coherence tomography in children: analysis of 44 eyes with intraocular tumors and simulating conditions. J Pediatr Ophthalmol Strabismus. 2004; 41:338–344. > LinkGoogle Scholar
- 17.Meyer CH, Lapolice DJ, Freedman SF. Foveal hypoplasia in oculocutaneous albinism demonstrated by optical coherence tomography. Am J Ophthalmol. 2002; 133:409–410.
10.1016/S0002-9394(01)01326-5 > Crossref MedlineGoogle Scholar - 18.Harvey PS, King RA, Summers CG. Spectrum of foveal development in albinism detected with optical coherence tomography. J AAPOS. 2006; 10:237–242.
10.1016/j.jaapos.2006.01.008 > Crossref MedlineGoogle Scholar - 19.El-Dairi MA, Holgado S, O’Donnell T, Buckley EG, Asrani S, Freedman SF. Optical coherence tomography as a tool for monitoring pediatric pseudotumor cerebri. J AAPOS. 2007; 11:564–570.
10.1016/j.jaapos.2007.06.018 > Crossref MedlineGoogle Scholar - 20.El-Dairi MA, Holgado S, Asrani SG, Enyedi LB, Freedman SF. Correlation between optical coherence tomography and glaucomatous optic nerve head damage in children. Br J Ophthalmol. 2009; 93:1325–1330.
10.1136/bjo.2008.142562 > Crossref MedlineGoogle Scholar - 21.El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF. Optical coherence tomography in the eyes of normal children. Arch Ophthalmol. 2009; 127:50–58.
10.1001/archophthalmol.2008.553 > Crossref MedlineGoogle Scholar - 22.Ecsedy M, Szamosi A, Karko C, A comparison of macular structure imaged by optical coherence tomography in preterm and full-term children. Invest Ophthalmol Vis Sci. 2007; 48:5207–5211.
10.1167/iovs.06-1199 > Crossref MedlineGoogle Scholar - 23.Dickmann A, Petroni S, Salerni A, Dell’Omo R, Balestrazzi E. Unilateral amblyopia: an optical coherence tomography study. J AAPOS. 2009; 13:148–150.
10.1016/j.jaapos.2008.10.009 > Crossref MedlineGoogle Scholar - 24.Querques G, Bux AV, Iaculli C, Delle Noci N. Isolated foveal hypoplasia. Retina. 2008; 28:1552–1553.
10.1097/IAE.0b013e3181819679 > Crossref MedlineGoogle Scholar - 25.Patel CK. Optical coherence tomography in the management of acute retinopathy of prematurity. Am J Ophthalmol. 2006; 141:582–584.
10.1016/j.ajo.2005.10.002 > Crossref MedlineGoogle Scholar - 26.Joshi MM, Trese MT, Capone A. Optical coherence tomography findings in stage 4A retinopathy of prematurity: a theory for visual variability. Ophthalmology. 2006; 113:657–660.
10.1016/j.ophtha.2006.01.007 > Crossref MedlineGoogle Scholar - 27.Harris PD, Farmery AD, Patel CK. The challenges of positioning an infant undergoing optical coherence tomography under general anesthesia. Paediatr Anaesth. 2009; 19:64–65.
10.1111/j.1460-9592.2008.02688.x > Crossref MedlineGoogle Scholar - 28.Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am J Ophthalmol. 2009; 147:364–373.e2.
10.1016/j.ajo.2008.08.010 > Crossref MedlineGoogle Scholar - 29.Muni RH, Kohly RP, Sohn EH, Lee TC. Hand-held spectral domain optical coherence tomography finding in shaken-baby syndrome. Retina. 2010; 30(4 suppl):S45–S50.
10.1097/IAE.0b013e3181dc048c > Crossref MedlineGoogle Scholar - 30.Chong GT, Farsiu S, Freedman SF, Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. Arch Ophthalmol. 2009; 127:37–44.
10.1001/archophthalmol.2008.550 > Crossref MedlineGoogle Scholar - 31.Muni RH, Kohly RP, Charonis AC, Lee TC. Retinoschisis detected with handheld spectral-domain optical coherence tomography in neonates with advanced retinopathy of prematurity. Arch Ophthalmol. 2010; 128:57–62.
10.1001/archophthalmol.2009.361 > Crossref MedlineGoogle Scholar - 32.Chavala SH, Farsiu S, Maldonado R, Wallace DK, Freedman SF, Toth CA. Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging. Ophthalmology. 2009; 116:2448–2456.
10.1016/j.ophtha.2009.06.003 > Crossref MedlineGoogle Scholar - 33.Gerth C, Zawadzki RJ, Heon E, Werner JS. High-resolution retinal imaging in young children using a handheld scanner and Fourier-domain optical coherence tomography. J AAPOS. 2009; 13:72–74.
10.1016/j.jaapos.2008.09.001 > Crossref MedlineGoogle Scholar - 34.Maldonado RS, Izatt JA, Sarin N, Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children. Invest Ophthalmol Vis Sci. 2010; 51:2678–2685.
10.1167/iovs.09-4403 > Crossref MedlineGoogle Scholar - 35.Berrocal AM, Houston SK, Pina YBascom Palmer Imaging Group, Murray TG. Intraoperative spectral domain optical coherence tomography (SD-OCT) imaging of complex pediatric retinal disease. ARVO Meeting Abstracts. 2010; 51:3861. > Google Scholar
- 36.Vinekar A, Sivakumar M, Shetty R, A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT+HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity. Eye (Lond). 2010; 24:379–382. > Crossref MedlineGoogle Scholar
- 37.Baranano DE, Fortun JA, Ray R, Intraoperative spectral-domain optical coherence tomography for macular pucker surgery. ARVO Meeting Abstracts. 2010; 51:269. > Google Scholar
- 38.Ray R, Baranano DE, Fortun JA, Intraoperative microscope mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery. Ophthalmology. In press. > Google Scholar
- 39.Dayani PN, Maldonado R, Farsiu S, Toth CA. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina. 2009; 29:1457–1468.
10.1097/IAE.0b013e3181b266bc > Crossref MedlineGoogle Scholar - 40.Wykoff CC, Berrocal AM, Schefler AC, Uhlhorn SR, Ruggieri M, Hess D. Intraoperative OCT of a full-thickness macular hole before and after internal limiting membrane peeling. Ophthalmic Surg Lasers Imaging. 2010; 41:7–11.
10.3928/15428877-20091230-01 > LinkGoogle Scholar - 41.Lee LB, Srivastava S. Intraoperative spectral domain imaging of rhegmatogenous retinal detachment repair using perfluoro-n-octane tamponade. ARVO Meeting Abstracts. 2010; 51:6076. > Google Scholar
- 42.Knecht PB, Kaufmann C, Menke MN, Watson SL, Bosch MM. Use of intraoperative fourier-domain anterior segment optical coherence tomography during descemet stripping endothelial keratoplasty. Am J Ophthalmol. 2010; 150:360–365.
10.1016/j.ajo.2010.04.017 > Crossref MedlineGoogle Scholar - 43.Ide T, Wang J, Tao A, Intraoperative use of three-dimensional spectral-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2010; 41:250–254.
10.3928/15428877-20100303-15 > LinkGoogle Scholar - 44.Tao YK, Ehlers JP, Toth CA, Izatt JA. Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. Opt Lett. 2010; 35:3315–3317.
10.1364/OL.35.003315 > Crossref MedlineGoogle Scholar - 45.Delori FC, Webb RH, Sliney DH. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am A Opt Image Sci Vis. 2007; 24:1250–1265.
10.1364/JOSAA.24.001250 > Crossref MedlineGoogle Scholar - 46.Sliney D, Aron-Rosa D, DeLori F, Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Appl Opt. 2005; 44:2162–2176.
10.1364/AO.44.002162 > Crossref MedlineGoogle Scholar - 47.American National Standard Institute. American National Standard for Safe Use of Laser. New York: Author; 2007. > Google Scholar
- 48.Ehlers JP, Tao YK, Maldonado R, Izatt J, Toth CA. Intraoperative integration of a microscope mounted spectral domain optical coherence tomography system [published online ahead of print January 31, 2011]. Invest Ophthalmol Vis Sci. > Google Scholar
- 49.Binder S, Falkner-Radler CI, Hauger C, Matz H, Glittenberg CG. Clinical applications of intrasurgical SD-optical coherence tomography. ARVO Meeting Abstracts. 2010; 51:268. > Google Scholar
- 50.Han S, Sarunic MV, Wu J, Humayun M, Yang C. Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection. J Biomed Opt. 2008; 13:020505.
10.1117/1.2904664 > Crossref MedlineGoogle Scholar - 51.Balicki M, Han JH, Iordachita I, Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. Med Image Comput Comput Assist Interv. 2009; 12:108–115. > MedlineGoogle Scholar
- 52.Radhakrishnan S, Rollins AM, Roth JE, Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001; 119:1179–1185. > Crossref MedlineGoogle Scholar
- 53.Geerling G, Muller M, Winter C, Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery. Arch Ophthalmol. 2005; 123:253–257.
10.1001/archopht.123.2.253 > Crossref MedlineGoogle Scholar - 54.Huttmann G, Lankenau E, Schulz-Wackerbarth C, Muller M, Steven P, Birngruber R. Optical coherence tomography: from retina imaging to intraoperative use: a review [article in German]. Klin Monbl Augenheilkd. 2009; 226:958–964. > MedlineGoogle Scholar
- 55.Kermani O, Will F, Massow O, Oberheide U, Lubatschowski H. Control of femtosecond thin-flap LASIK using OCT in human donor eyes. J Refract Surg. 2010; 26:57–60.
10.3928/1081597X-20101215-09 > LinkGoogle Scholar - 56.Ehlers JP, Gupta PK, Farsiu S, Evaluation of contrast agents for enhanced visualization in optical coherence tomography. Invest Ophthalmol Vis Sci. 2010; 51:6614–6619.
10.1167/iovs.10-6195 > Crossref MedlineGoogle Scholar - 57.Galeotti J, Sajjad A, Wang B, The OCT penlight: in-situ image guidance for microsurgery. Proc SPIE. 2010; 7625(762502).
10.1117/12.844411 > CrossrefGoogle Scholar