Skip to main content
Ophthalmic Surgery, Lasers and Imaging Retina, 2012;43(6):S67–S74
Published Online:https://doi.org/10.3928/15428877-20121003-01Cited by:10

Abstract

BACKGROUND AND OBJECTIVE:

To compare rates of abnormal peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell layer scans acquired with Cirrus HD-OCT (Carl Zeiss Meditec, Inc., Dublin, CA) and RTVue-100 (Optovue Inc., Fremont, CA) in healthy myopic eyes.

PATIENTS AND METHODS:

Forty-one non-glaucomatous myopic eyes (41 individuals) were scanned with Cirrus to measure RNFL and ganglion cell-inner plexiform layer (GCIPL) and with RTVue to measure peripapillary RNFL and ganglion cell complex (GCC) thicknesses. Rates of abnormal scans were calculated and compared between devices. Inter-device agreement in falsely classifying scans as abnormal was also assessed.

RESULTS:

The rate of abnormal average and four-quadrant RNFL was 4.8% to 7.3% on Cirrus and 2.4% to 9.7% on RTVue (P > .05). The overall rate of abnormal scans was 19.2% on Cirrus and 29.3% on RTVue (P = .3). Rates of abnormal Cirrus average and segmental GCIPL (12.2% to 17%) were similar to those of RTVue average and segmental GCC (9.7% to 14.6%) (P > .05). The overall rate of abnormal GCIPL (36.6%) was higher than that of GCC (14.6%) (P = .023). The inter-device agreement was poor for average RNFL (κ = −0.09), very good for average ganglion cell (κ = 0.81), and fair for overall RNFL (κ = 0.35) and overall ganglion cell (κ = 0.34).

CONCLUSION:

The high rates of abnormal RNFL and ganglion cell layer scans on both devices call for caution, particularly when attempting to diagnose glaucoma in myopic eyes using these devices. The RNFL and ganglion cell layer analyses may not be interchangeable on either of these devices. These two devices are not interchangeable for classifying healthy myopic eyes based on RNFL or ganglion cell layer analysis.

  • 1.Wu SY, Nemesure B, Leske MC. Refractive errors in a black adult population: the Barbados Eye Study. Invest Ophthalmol Vis Sci. 1999; 40:2179–2184.

    MedlineGoogle Scholar
  • 2.Mitchell P, Hourihan F, Sandbach J, et al.The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999; 106:2010–2015.10.1016/S0161-6420(99)90416-5

    Crossref MedlineGoogle Scholar
  • 3.Suzuki Y, Iwase A, Araie M, et al.Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006; 113:1613–1617.10.1016/j.ophtha.2006.03.059

    Crossref MedlineGoogle Scholar
  • 4.Perera SA, Wong TY, Tay WT, et al.Refractive error, axial dimensions, and primary open-angle glaucoma: the Singapore Malay Eye Study. Arch Ophthalmol. 2010; 128:900–905.10.1001/archophthalmol.2010.125

    Crossref MedlineGoogle Scholar
  • 5.Czudowska MA, Ramdas WD, Wolfs RC, et al.Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam Study. Ophthalmology. 2010; 117:1705–1712.10.1016/j.ophtha.2010.01.034

    Crossref MedlineGoogle Scholar
  • 6.Wong TY, Klein BE, Klein R, et al.Refractive errors, intraocular pressure, and glaucoma in a white population. Ophthalmology. 2003; 110:211–217.10.1016/S0161-6420(02)01260-5

    Crossref MedlineGoogle Scholar
  • 7.Casson RJ, Gupta A, Newland HS, et al.Risk factors for primary open-angle glaucoma in a Burmese population: the Meiktila Eye Study. Clin Experiment Ophthalmol. 2007; 35:739–744.10.1111/j.1442-9071.2007.01619.x

    Crossref MedlineGoogle Scholar
  • 8.Sia DI, Edussuriya K, Sennanayake S, et al.Prevalence of and risk factors for primary open-angle glaucoma in central Sri Lanka: the Kandy Eye Study. Ophthalmic Epidemiol. 2010; 17:211–216.10.3109/09286586.2010.483753

    Crossref MedlineGoogle Scholar
  • 9.Marcus MW, de Vries MM, Montolio FG, et al.Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology. 2011; 118:1989–1994.10.1016/j.ophtha.2011.03.012

    Crossref MedlineGoogle Scholar
  • 10.Greve EL, Furuno F. Myopia and glaucoma. Graefes Arch Clin Exp Ophthalmol. 1980; 213:33–41.10.1007/BF02391209

    CrossrefGoogle Scholar
  • 11.Jonas JB, Gusek GC, Naumann GO. Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol. 1988; 226:587–590.10.1007/BF02169209

    Crossref MedlineGoogle Scholar
  • 12.Tay E, Seah SK, Chan SP, et al.Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol. 2005; 139:247–252.10.1016/j.ajo.2004.08.076

    Crossref MedlineGoogle Scholar
  • 13.Rauscher FM, Sekhon N, Feuer WJ, et al.Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma. 2009; 18:501–505.10.1097/IJG.0b013e318193c2be

    Crossref MedlineGoogle Scholar
  • 14.Doshi A, Kreidl KO, Lombardi L, et al.Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males. Ophthalmology. 2007; 114:472–479.10.1016/j.ophtha.2006.07.036

    Crossref MedlineGoogle Scholar
  • 15.Kumar RS, Baskaran M, Singh K, et al.Clinical Characterization of young Chinese myopes with optic nerve and visual field changes resembling glaucoma. J Glaucoma. In press.

    Google Scholar
  • 16.Tan O, Chopra V, Lu AT, et al.Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116:2305–2314.10.1016/j.ophtha.2009.05.025

    Crossref MedlineGoogle Scholar
  • 17.Wang M, Hood DC, Cho JS, et al.Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch Ophthalmol. 2009; 127:875–881.10.1001/archophthalmol.2009.145

    Crossref MedlineGoogle Scholar
  • 18.Mwanza JC, Durbin MK, Budenz DL, et al.Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology. In press.

    Google Scholar
  • 19.Leung CK, Mohamed S, Leung KS, et al.Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006; 47:5171–5176.10.1167/iovs.06-0545

    Crossref MedlineGoogle Scholar
  • 20.Vernon SA, Rotchford AP, Negi A, et al.Peripapillary retinal nerve fibre layer thickness in highly myopic Caucasians as measured by Stratus optical coherence tomography. Br J Ophthalmol. 2008; 92:1076–1080.10.1136/bjo.2007.127571

    Crossref MedlineGoogle Scholar
  • 21.Kim NR, Lim H, Kim JH, et al.Factors associated with false positives in retinal nerve fiber layer color codes from spectral-domain optical coherence tomography. Ophthalmology. 2011; 118:1774–1781.10.1016/j.ophtha.2011.01.058

    Crossref MedlineGoogle Scholar
  • 22.Qiu KL, Zhang MZ, Leung CK, et al.Diagnostic classification of retinal nerve fiber layer measurement in myopic eyes: a comparison between time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol. 2011; 152:646–653.10.1016/j.ajo.2011.04.002

    Crossref MedlineGoogle Scholar
  • 23.Mwanza JC, Oakley JD, Budenz DL, et al.Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011; 52:8323–8329.10.1167/iovs.11-7962

    Crossref MedlineGoogle Scholar
  • 24.Mwanza JC, Durbin MK, Budenz DL, et al.Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011; 52:7872–7879.10.1167/iovs.11-7896

    Crossref MedlineGoogle Scholar
  • 25.Altman DG. Practical Statistics for Medical Research. Boca Raton, FL: Chapman and Hall; 1997:404.

    Google Scholar
  • 26.Bengtsson B, Andersson S, Heijl A. Performance of time-domain and spectral-domain optical coherence tomography for glaucoma screening. Acta Ophthalmol. 2012; 90:310–315.10.1111/j.1755-3768.2010.01977.x

    Crossref MedlineGoogle Scholar
  • 27.Chang RT, Knight OJ, Feuer WJ, et al.Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology. 2009; 116:2294–2299.10.1016/j.ophtha.2009.06.012

    Crossref MedlineGoogle Scholar
  • 28.Mwanza JC, Oakley JD, Budenz DL, et al.Ability of Cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011; 118:241–248.10.1016/j.ophtha.2010.06.036

    Crossref MedlineGoogle Scholar
  • 29.Rao HL, Zangwill LM, Weinreb RN, et al.Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010; 117:1692–1699.10.1016/j.ophtha.2010.01.031

    Crossref MedlineGoogle Scholar
  • 30.Sehi M, Grewal DS, Sheets CW, et al.Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol. 2009; 148:597–605.10.1016/j.ajo.2009.05.030

    Crossref MedlineGoogle Scholar
  • 31.Budenz DL, Anderson DR, Varma R, et al.Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology. 2007; 114:1046–1052.10.1016/j.ophtha.2006.08.046

    Crossref MedlineGoogle Scholar
  • 32.Kim NR, Lee ES, Seong GJ, et al.Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol. 2011; 95:1115–1121.10.1136/bjo.2010.182493

    Crossref MedlineGoogle Scholar
  • 33.Schweitzer KD, Ehmann D, Garcia R. Nerve fibre layer changes in highly myopic eyes by optical coherence tomography. Can J Ophthalmol. 2009; 44:13–16.10.3129/i09-058

    CrossrefGoogle Scholar
  • 34.Kim NR, Kim JH, Lee J, et al.Determinants of perimacular inner retinal layer thickness in normal eyes measured by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011; 52:3413–3418.10.1167/iovs.10-6648

    Crossref MedlineGoogle Scholar
  • 35.Loyo-Berrios NI, Nlustein JN. Primary open-angle glaucoma and myopia: a narrative review. The Wisconsin Medical Journal. 2007; 106:85–95.

    Google Scholar
  • 36.Leite MT, Rao HL, Zangwill LM, et al.Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011; 118:1334–1339.

    Crossref MedlineGoogle Scholar
  • 37.Leite MT, Rao HL, Weinreb RN, et al.Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am J Ophthalmol. 2011; 151:85–92.10.1016/j.ajo.2010.06.041

    Crossref MedlineGoogle Scholar
  • 38.Savini G, Carbonelli M, Barboni P. Retinal nerve fiber layer thickness measurement by Fourier-domain optical coherence tomography: a comparison between cirrus-HD OCT and RTVue in healthy eyes. J Glaucoma. 2010; 19:369–372.10.1097/IJG.0b013e3181bdb55d

    Crossref MedlineGoogle Scholar
  • 39.Bagci AM, Shadidi M, Ansari R, et al.Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol. 2008; 146:679–687.10.1016/j.ajo.2008.06.010

    Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×