Skip to main content
Published Online:https://doi.org/10.3928/23258160-20130313-05Cited by:40

Abstract

PURPOSE:

To compare two different approaches to measuring areas of geographic atrophy (GA) using spectral-domain optical coherence tomography (SD-OCT).

METHODS:

Fifty eyes with GA were imaged with an SD-OCT instrument. OCT fundus images and sub– retinal pigment epithelium (RPE) slab images were generated. Three graders manually drew the GA boundaries on both en face images. An automated algorithm was used to segment the GA boundaries from the sub-RPE slabs.

RESULTS:

The agreement between the three manual measurements on both OCT fundus images (ICC = .998) and sub-RPE slabs (ICC = .999) was excellent. Area measurements from OCT fundus images and sub-RPE slabs were highly correlated. The agreement between manual and automated measurements on the sub-RPE slabs was very good (ICC = .795).

CONCLUSION:

Both OCT fundus images and sub-RPE slab images proved useful for measuring GA in age-related macular degeneration. The automated algorithm typically provided useful measurements of GA area from the sub-RPE slabs.

[Ophthalmic Surg Lasers Imaging Retina. 2013;44:127–132]

  • 1.Van Leeuwen R, Klaver CC, Vingerling JR, Hofman A, de Jong PT. Epidemiology of age-related maculopathy: A review. Eur J Epidemiol. 2003; 18(9):845–85410.1023/A:1025643303914.

    Crossref MedlineGoogle Scholar
  • 2.Schatz H, McDonald HR. Atrophic macular degeneration. Rate of spread of geographic atrophy and visual loss. Ophthalmology. 1989; 96(10):1541–1551.

    Crossref MedlineGoogle Scholar
  • 3.Potter JW, Thallemer JM. Geographic atrophy of the retinal pigment epithelium: diagnosis and vision rehabilitation. J Am Optom Assoc. 1981; 52(6):503–508.

    MedlineGoogle Scholar
  • 4.Sunness JS, Bressler NM, Tian Y, Alexander J, Applegate CA. Measuring geographic atrophy in advanced age-related macular degeneration. Invest Ophthalmol Vis Sci. 1999; 40(8):1761–1769.

    MedlineGoogle Scholar
  • 5.Maguire P, Vine AK. Geographic atrophy of the retinal pigment epithelium. Am J Ophthalmol. 1986; 102(5):621–625.

    Crossref MedlineGoogle Scholar
  • 6.Sarks JP, Sarks SH, Killingsworth MC. Evolution of geographic atrophy of the retinal pigment epithelium. Eye (Lond). 1988; 2 (Pt 5):552–57710.1038/eye.1988.106.

    Crossref MedlineGoogle Scholar
  • 7.Sunness JS, Gonzalez-Baron J, Applegate CA, et al.Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. Ophthalmology. 1999; 106(9):1768–7910.1016/S0161-6420(99)90340-8.

    Crossref MedlineGoogle Scholar
  • 8.Sunness JS, Bressler NM, Maguire MG. Scanning laser ophthalmoscopic analysis of the pattern of visual loss in age-related geographic atrophy of the macula. Am J Ophthalmol. 1995; 119(2):143–151.

    Crossref MedlineGoogle Scholar
  • 9.Klein R, Klein BE, Franke T. The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology. 1993; 100(3):406–414.

    Crossref MedlineGoogle Scholar
  • 10.Vingerling JR, Dielemans I, Hofman A, et al.The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology. 1995; 102(2):205–210.

    Crossref MedlineGoogle Scholar
  • 11.Hirvelä H, Luukinen H, Läärä E, Sc L, Laatikainen L. Risk factors of age-related maculopathy in a population 70 years of age or older. Ophthalmology. 1996; 103(6):871–877.

    Crossref MedlineGoogle Scholar
  • 12.Yehoshua Z, Rosenfeld PJ, Gregori G, et al.Progression of geographic atrophy in age related macular degeneration imaged with spectral domain optical coherence tomography. Ophthalmology. 2011; 118(4):679–68610.1016/j.ophtha.2010.08.018.

    Crossref MedlineGoogle Scholar
  • 13.Lujan BJ, Rosenfeld PJ, Gregori G, et al.Spectral domain optical coherence tomographic imaging of geographic atrophy. Ophthalmic Surg Lasers Imaging. 2009; 40(2):96–10110.3928/15428877-20090301-16.

    LinkGoogle Scholar
  • 14.Bearelly S, Chau FY, Koreishi A, Stinnett SS, Izatt JA, Toth CA. Spectral domain optical coherence tomography imaging of geographic atrophy margins. Ophthalmology. 2009; 116(9):1762–176910.1016/j.ophtha.2009.04.015.

    Crossref MedlineGoogle Scholar
  • 15.Fleckenstein M, Charbel Issa P, Helb HM, et al.High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008; 49(9):4137–414410.1167/iovs.08-1967.

    Crossref MedlineGoogle Scholar
  • 16.Fleckenstein M, Schmitz-Valckenberg S, Adrion C, et al.Tracking progression with spectral-domain optical coherence tomography in geographic atrophy caused by age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010; 51(8):3846–385210.1167/iovs.09-4533.

    Crossref MedlineGoogle Scholar
  • 17.Helb HM, Charbel Issa P, Fleckenstein M, et al.Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high-resolution, spectral-domain optical coherence tomography. Acta Ophthalmol. 2010; 88(8):842–84910.1111/j.1755-3768.2009.01602.x.

    Crossref MedlineGoogle Scholar
  • 18.Fleckenstein M, Schmitz-Valckenberg S, Martens C, et al.Fundus autofluorescence and spectral-domain optical coherence tomography characteristics in a rapidly progressing form of geographic atrophy. Invest Ophthalmol Vis Sci. 2011; 52(6):3761–376610.1167/iovs.10-7021.

    Crossref MedlineGoogle Scholar
  • 19.Schmitz-Valckenberg S, Fleckenstein M, Göbel AP, Hohman TC, Holz FG. Optical coherence tomography and autofluorescence findings in areas with geographic atrophy due to age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011; 52(1):1–610.1167/iovs.10-5619.

    Crossref MedlineGoogle Scholar
  • 20.Sayegh RG, Simader C, Scheschy U, et al.A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy. Ophthalmology. 2011; 118(9):1844–185110.1016/j.ophtha.2011.01.043.

    Crossref MedlineGoogle Scholar
  • 21.Jiao S, Knighton RW, Huang X, Gregori G, Puliafito C. Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography. Opt Express. 2005; 13(2):444–45210.1364/OPEX.13.000444.

    Crossref MedlineGoogle Scholar
  • 22.Wojtkowski M, Srinivasan V, Fujimoto JG, et al.Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2005; 112(10):1734–174610.1016/j.ophtha.2005.05.023.

    Crossref MedlineGoogle Scholar
  • 23.Drexler W, Sattmann H, Hermann B, et al.Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol. 2003; 121(5):695–70610.1001/archopht.121.5.695.

    Crossref MedlineGoogle Scholar
  • 24.Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1(8476):307–31010.1016/S0140-6736(86)90837-8.

    Crossref MedlineGoogle Scholar
  • 25.Schutze C, Ahlers C, Sacu S, et al.Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy. Acta Ophthalmol. 2011; 89(3):235–24010.1111/j.1755-3768.2010.01955.x.

    Crossref MedlineGoogle Scholar
  • 26.Li Y, Gregori G, Lam BL, Rosenfeld PJ. Automatic montage of SDOCT data sets. Opt Express. 2011; 19(27):26239–2624810.1364/OE.19.026239.

    Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×