Abstract
The authors report the use of adaptive-optics scanning laser ophthalmoscopy (AO-SLO) to investigate RHO, D190N autosomal-dominant retinitis pigmentosa in two siblings (11 and 16 years old, respectively). Each patient exhibited distinct hyperautofluorescence patterns in which the outer borders corresponded to inner segment ellipsoid band disruption. Areas within the hyperautofluorescence patterns exhibited normal photoreceptor outer segments and retinal pigment epithelium. However, AO-SLO imaging revealed noticeable spacing irregularities in the cone mosaic. AO-SLO allows researchers to characterize retinal structural abnormalities with precision so that early structural changes in retinitis pigmentosa can be identified and reconciled with genetic findings.
[Ophthalmic Surg Lasers Imaging Retina. 2014;45:469–473.]
- 1.Blanks JC, Adinolfi AM, Lolley RN. Photoreceptor degeneration and synaptogenesis in retinal-degenerative (rd) mice. J Comp Neurol. 1974; 156(1):95–106.
10.1002/cne.901560108 > Crossref MedlineGoogle Scholar - 2.Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature. 1990; 347(6294):677–680.
10.1038/347677a0 > Crossref MedlineGoogle Scholar - 3.Hernandez-Rodriguez EW, Sanchez-Garcia E, Crespo-Otero R, Montero-Alejo AL, Montero LA, Thiel W. Understanding rhodopsin mutations linked to the retinitis pigmentosa disease: a QM/MM and DFT/MRCI study. J Phys Chem B. 2012; 116(3):1060–1076.
10.1021/jp2037334 > Crossref MedlineGoogle Scholar - 4.Rivolta C, Sharon D, DeAngelis MM, Dryja TP. Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet. 2002; 11(10):1219–1227.
10.1093/hmg/11.10.1219 > Crossref MedlineGoogle Scholar - 5.Filipek S, Stenkamp RE, Teller DC, Palczewski K. G protein-coupled receptor rhodopsin: a prospectus. Annu Rev Physiol. 2003; 65:851–879.
10.1146/annurev.physiol.65.092101.142611 > Crossref MedlineGoogle Scholar - 6.Palczewski K, Kumasaka T, Hori T, Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000; 289(5480):739–745.
10.1126/science.289.5480.739 > Crossref MedlineGoogle Scholar - 7.Okada T, Terakita A, Shichida Y. [Structure-function relationship in G protein-coupled receptors deduced from crystal structure of rhodopsin]. Tanpakushitsu Kakusan Koso. 2002; 47(8 Suppl):1123–1130. > MedlineGoogle Scholar
- 8.Janz JM, Farrens DL. Assessing structural elements that influence Schiff base stability: mutants E113Q and D190N destabilize rhodopsin through different mechanisms. Vision Res. 2003; 43(28):2991–3002.
10.1016/j.visres.2003.08.010 > Crossref MedlineGoogle Scholar - 9.Zhang Y, Poonja S, Roorda A. MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt Lett. 2006; 31(9):1268–1270.
10.1364/OL.31.001268 > Crossref MedlineGoogle Scholar - 10.Zhang Y, Roorda A. Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope. J Biomed Opt. 2006; 11(1):014002.
10.1117/1.2166434 > Crossref MedlineGoogle Scholar - 11.Lima LH, Cella W, Greenstein VC, Structural assessment of hyperautofluorescent ring in patients with retinitis pigmentosa. Retina. 2009; 29(7):1025–1031.
10.1097/IAE.0b013e3181ac2418 > Crossref MedlineGoogle Scholar - 12.Robson AG, Michaelides M, Saihan Z, Functional characteristics of patients with retinal dystrophy that manifest abnormal para-foveal annuli of high density fundus autofluorescence; a review and update. Doc Ophthalmol. 2008; 116(2):79–89.
10.1007/s10633-007-9087-4 > Crossref MedlineGoogle Scholar - 13.Popovic P, Jarc-Vidmar M, Hawlina M. Abnormal fundus auto-fluorescence in relation to retinal function in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2005; 243(10):1018–1027.
10.1007/s00417-005-1186-x > Crossref MedlineGoogle Scholar - 14.Kaushal S, Ridge KD, Khorana HG. Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci USA.1994; 91(9):4024–4028.
10.1073/pnas.91.9.4024 > Crossref MedlineGoogle Scholar - 15.Tsui I, Chou CL, Palmer N, Lin CS, Tsang SH. Phenotype-genotype correlations in autosomal dominant retinitis pigmentosa caused by RHO, D190N. Curr Eye Res. 2008; 33(11):1014–1022.
10.1080/02713680802484645 > Crossref MedlineGoogle Scholar - 16.Tsang SH, Vaclavik V, Bird AC, Robson AG, Holder GE. Novel phenotypic and genotypic findings in X-linked retinoschisis. Arch Ophthalmol. 2007; 125(2):259–267.
10.1001/archopht.125.2.259 > Crossref MedlineGoogle Scholar - 17.Robson AG, Saihan Z, Jenkins SA, Functional characterisation and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br J Ophthalmol. 2006; 90(4):472–479.
10.1136/bjo.2005.082487 > Crossref MedlineGoogle Scholar - 18.Robson AG, Tufail A, Fitzke F, Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa. Retina. 2011; 31(8):1670–1679.
10.1097/IAE.0b013e318206d155 > Crossref MedlineGoogle Scholar - 19.Lima LH, Burke T, Greenstein VC, Progressive constriction of the hyperautofluorescent ring in retinitis pigmentosa. Am J Ophthalmol. 2012; 153(4):718–727, 727e1–2.
10.1016/j.ajo.2011.08.043 > Crossref MedlineGoogle Scholar - 20.Aizawa S, Mitamura Y, Hagiwara A, Sugawara T, Yamamoto S. Changes of fundus autofluorescence, photoreceptor inner and outer segment junction line, and visual function in patients with retinitis pigmentosa. Clin Experiment Ophthalmol. 2010; 38(6):597–604.
10.1111/j.1442-9071.2010.02321.x > Crossref MedlineGoogle Scholar - 21.Wakabayashi T, Sawa M, Gomi F, Tsujikawa M. Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa. Acta Ophthalmol. 2010; 88(5):e177–183.
10.1111/j.1755-3768.2010.01926.x > Crossref MedlineGoogle Scholar - 22.Robson AG, Egan CA, Luong VA, Bird AC, Holder GE, Gitzke FW. Comparison of fundus autofluorescence with photopic and scotopic fine-matrix mapping in patients with retinitis pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci. 2004; 45(11):4119–4125.
10.1167/iovs.04-0211 > Crossref MedlineGoogle Scholar - 23.Bovolenta P, Cisneros E. Retinitis pigmentosa: cone photoreceptors starving to death. Nat Neurosci. 2009; 12(1):5–6.
10.1038/nn0109-5 > Crossref MedlineGoogle Scholar - 24.Greenstein VC, Duncker T, Holopigian K, Structural and Functional Changes Associated with Normal and Abnormal Fundus Autofluorescence in Patients with Retinitis Pigmentosa. Retina.2012; 32(2):349–357.
10.1097/IAE.0b013e31821dfc17 > Crossref MedlineGoogle Scholar - 25.Hood DC, Zhang X, Ramachandran R, The inner segment/outer segment border seen on optical coherence tomography is less intense in patients with diminished cone function. Invest Ophthalmol Vis Sci. 2011; 52(13):9703–9709.
10.1167/iovs.11-8650 > Crossref MedlineGoogle Scholar - 26.Yoon MK, Roorda A, Zhang Y, Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation. Invest Ophthalmol Vis Sci. 2009; 50(4):1838–1847.
10.1167/iovs.08-2029 > Crossref MedlineGoogle Scholar - 27.Ji Y, Zhu CL, Grzywacz NM, Lee EJ. Rearrangement of the cone mosaic in the retina of the rat model of retinitis pigmentosa. J Comp Neurol. 2012; 520(4):874–888.
10.1002/cne.22800 > Crossref MedlineGoogle Scholar - 28.Berson EL, Sandberg MA, Dryja TP. Autosomal dominant retinitis pigmentosa with rhodopsin, valine-345-methionine. Trans Am Ophthalmol Soc.1991; 89:117–130. > MedlineGoogle Scholar
- 29.Machida S, Kondo M, Jamison JA, P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci. 2000; 41(10):3200–3209. > MedlineGoogle Scholar