Skip to main content
Published Online:https://doi.org/10.3928/23258160-20140909-08Cited by:134

Abstract

BACKGROUND AND OBJECTIVE:

To demonstrate the feasibility of using a 1,050-nm swept-source optical coherence tomography (SS-OCT) system to achieve noninvasive retinal vasculature imaging in human eyes.

MATERIALS AND METHODS:

Volumetric data sets were acquired using a 1-µm SS-OCT prototype that operated at a 100-kHz A-line rate. A scanning protocol designed to allow for motion contrast processing, referred to as OCT angiography or optical microangiography (OMAG), was used to scan an approximately 3 × 3–mm area in the central macular region of the retina within approximately 4.5 seconds. An intensity differentiation-based OMAG algorithm was used to extract three-dimensional retinal functional microvasculature information.

RESULTS:

Intensity signal differentiation generated capillary-level resolution en face OMAG images of the retina. The parafoveal capillaries were clearly visible, thereby allowing visualization of the foveal avascular zone in healthy subjects.

CONCLUSION:

The capability of OMAG to produce retinal vascular images was demonstrated using the 1-µm SS-OCT prototype. This technique has potential clinical value for studying retinal vasculature abnormalities.

[Ophthalmic Surg Lasers Imaging Retina. 2014;45:382–389.]

  • 1.Bennett TJ, Barry CJ. Ophthalmic imaging today: an ophthalmic photographer’s viewpoint - a review. Clin Exp Ophthalmol. 2009; 37(1):2–13.10.1111/j.1442-9071.2008.01812.x

    Crossref MedlineGoogle Scholar
  • 2.Yannuzzi LA, Ober MD, Slakter JS, et al.Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol. 2004; 137(3):511–524.10.1016/j.ajo.2003.12.035

    Crossref MedlineGoogle Scholar
  • 3.Schneider EW, Mruthyunjaya P, Talwar N, et al.Reduced fluorescein angiography and fundus photography use in the management of neovascular macular degeneration and macular edema during the past decade. Invest Ophthalmol Vis Sci. 2014; 55(1):542–549.10.1167/iovs.13-13034

    Crossref MedlineGoogle Scholar
  • 4.Chen ZP, Milner TE, Dave D, Nelson JS. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett. 1997; 22(1):64–66.10.1364/OL.22.000064

    Crossref MedlineGoogle Scholar
  • 5.White BR, Pierce MC, Nassif N, et al.In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt Express. 2003; 11(25):3490–3497.10.1364/OE.11.003490

    Crossref MedlineGoogle Scholar
  • 6.Wang RK, Jacques SL, Ma Z, et al.Three dimensional optical angiography. Opt Express. 2007; 15(7):4083–4097.10.1364/OE.15.004083

    Crossref MedlineGoogle Scholar
  • 7.Wang RK, An L, Francis P, Wilson DJ. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett. 2010; 35(9):1467–1469.10.1364/OL.35.001467

    Crossref MedlineGoogle Scholar
  • 8.An L, Shen TT, Wang RKK. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. J Biomed Opt. 2011; 16(10):106013.10.1117/1.3642638

    Crossref MedlineGoogle Scholar
  • 9.Zhi ZW, Qin J, An L, Wang RKK. Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds. Opt Lett. 2011; 36(16):3169–3171.10.1364/OL.36.003169

    Crossref MedlineGoogle Scholar
  • 10.Choi WJ, Reif R, Yousefi S, Wang RK. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask. J Biomed Opt. 2014; 19(3):036010.10.1117/1.JBO.19.3.036010

    Crossref MedlineGoogle Scholar
  • 11.Wang RKK, An L. Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate. J Biomed Opt. 2011; 16(5):050503.10.1117/1.3582159

    Crossref MedlineGoogle Scholar
  • 12.Potsaid B, Baumann B, Huang D, et al.Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010; 18(19):20029–20048.10.1364/OE.18.020029

    Crossref MedlineGoogle Scholar
  • 13.Yin X, Chao J, Wang RK. User-guided segmentation for volumetric retinal optical coherence tomography images. J Biomed Opt. 2014; 19 (8):086020.10.1117/1.JBO.19.8.086020

    Crossref MedlineGoogle Scholar
  • 14.Loduca AL, Zhang C, Zelkha R, Shahidi M. Thickness mapping of retinal layers by spectral-domain optical coherence tomography. Am J Ophthalmol. 2010; 150(6):849–855.10.1016/j.ajo.2010.06.034

    Crossref MedlineGoogle Scholar
  • 15.Henkind P, Hansen RI, Szalay J. Ocular circulation. In: , Records RE, ed. Physiology of the Human Eye and Visual System. New York: Harper & Row, 1979.

    Google Scholar
  • 16.Arend O, Wolf S, Jung F, et al.Retinal microcirculation in patients with diabetes mellitus - dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991; 75(9):514–518.10.1136/bjo.75.9.514

    Crossref MedlineGoogle Scholar
  • 17.Yannuzzi LA, Bardal AMC, Freund KB, et al.Idiopathic macular telangiectasia. Arch Ophthalmol. 2006; 124(4):450–460.10.1001/archopht.124.4.450

    Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×