Skip to main content
Published Online:https://doi.org/10.3928/23258160-20141118-03Cited by:150

Abstract

BACKGROUND AND OBJECTIVE:

To investigate the potential of ultrahigh-speed swept-source optical coherence tomography angiography (OCTA) to visualize retinal and choroidal vascular changes in patients with exudative age-related macular degeneration (AMD).

PATIENTS AND METHODS:

Observational, prospective cross-sectional study. An ultrahigh-speed swept-source prototype was used to perform OCTA of the retinal and choriocapillaris microvasculature in 63 eyes of 32 healthy controls and 19 eyes of 15 patients with exudative AMD. Main outcome measure: qualitative comparison of the retinal and choriocapillaris microvasculature in the two groups.

RESULTS:

Choroidal neovascularization (CNV) was clearly visualized in 16 of the 19 eyes with exudative AMD, located above regions of severe choriocapillaris alteration. In 14 of these eyes, the CNV lesions were surrounded by regions of choriocapillaris alteration.

CONCLUSION:

OCTA may offer noninvasive monitoring of the retinal and choriocapillaris microvasculature in patients with CNV, which may assist in diagnosis and monitoring.

[Ophthalmic Surg Lasers Imaging Retina. 2014;45:496–505.]

  • 1.Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging Retina. 2005; 36(4):331–335.

    LinkGoogle Scholar
  • 2.Kaiser PK, Blodi BA, Shapiro H, et al.Angiographic and optical coherence tomographic results of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology. 2007; 114(10):1868–1875.10.1016/j.ophtha.2007.04.030

    Crossref MedlineGoogle Scholar
  • 3.Fung AE, Lalwani GA, Rosenfeld PJ, et al.An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (lucentis) for neovascular age-related macular degeneration. Am J Ophthalmol. 2007; 143(4):566–583.10.1016/j.ajo.2007.01.028

    Crossref MedlineGoogle Scholar
  • 4.Lalwani GA, Rosenfeld PJ, Fung AE, et al.A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am J Ophthalmol. 2009; 148(1):43–58.10.1016/j.ajo.2009.01.024

    Crossref MedlineGoogle Scholar
  • 5.Hong Y-J, Miura M, Makita S, et al.Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography. Invest Ophthalmol Vis Sci. 2013; 54(5):3621–3631.10.1167/iovs.12-11184

    Crossref MedlineGoogle Scholar
  • 6.Jia Y, Bailey ST, Wilson DJ, et al.Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014; 121(7):1435–1444.10.1016/j.ophtha.2014.01.034

    Crossref MedlineGoogle Scholar
  • 7.Albert DM, Miller JW, Azar DT, Blodi BA. Albert & Jakobiec’s Principles & Practice of Ophthalmology. 3rd ed. Philadelphia, PA: Saunders Elsevier; 2008.

    Google Scholar
  • 8.Ryan S, Schachat A, Wilkinson C, et al.Retina. 5th ed. Philadelphia, PA: Saunders Elsevier; 2013.

    Google Scholar
  • 9.Bressler NM, Doan QV, Varma R, et al.Estimated cases of legal blindness and visual impairment avoided using ranibizumab for choroidal neovascularization: non-Hispanic white population in the United States with age-related macular degeneration. Arch Ophthalmol. 2011; 129(6):709–717.10.1001/archophthalmol.2011.140

    Crossref MedlineGoogle Scholar
  • 10.Gragoudas ES, Adamis AP, Cunningham ET, et al.Pegaptanib for neovascular age-related macular degeneration. New Engl J Med. 2004; 351(27):2805–2816.10.1056/NEJMoa042760

    Crossref MedlineGoogle Scholar
  • 11.Brown DM, Kaiser PK, Michels M, et al.Ranibizumab versus verteporfin for neovascular age-related macular degeneration. New Engl J Med. 2006; 355(14):1432–1444.10.1056/NEJMoa062655

    Crossref MedlineGoogle Scholar
  • 12.Rosenfeld PJ, Brown DM, Heier JS, et al.Ranibizumab for neovascular age-related macular degeneration. New Engl J Med. 2006; 355(14):1419–1431.10.1056/NEJMoa054481

    Crossref MedlineGoogle Scholar
  • 13.Schmidt-Erfurth UM, Pruente C. Management of neovascular age-related macular degeneration. Prog Retin Eye Res. 2007; 26(4):437–451.10.1016/j.preteyeres.2007.03.002

    Crossref MedlineGoogle Scholar
  • 14.Bressler NM. Antiangiogenic approaches to age-related macular degeneration today. Ophthalmology. 2009; 116(10):S15–S23.10.1016/j.ophtha.2009.06.048

    Crossref MedlineGoogle Scholar
  • 15.Martin DF, Maguire MG, Fine SL, et al.Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012; 119(7):1388–1398.10.1016/j.ophtha.2012.03.053

    Crossref MedlineGoogle Scholar
  • 16.Bischoff P, Flower R. Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?Doc Ophthalmol. 1985; 60(3):235–291.10.1007/BF00157827

    Crossref MedlineGoogle Scholar
  • 17.Flower R. Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms. Invest Ophthalmol Vis Sci. 1993; 34(9):2720–2729.

    MedlineGoogle Scholar
  • 18.Zhu L, Zheng Y, von Kerczek CH, et al.Feasibility of Extracting Velocity Distribution in Choriocapillaris in Human Eyes from ICG Dye Angiograms. J Biomech Eng. 2005; 128(2):203–209.10.1115/1.2165692

    CrossrefGoogle Scholar
  • 19.Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012; 33(4):295–317.10.1016/j.mam.2012.04.005

    Crossref MedlineGoogle Scholar
  • 20.McLeod DS, Taomoto M, Otsuji T, et al.Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2002; 43(6):1986–1993.

    MedlineGoogle Scholar
  • 21.McLeod DS, Grebe R, Bhutto I, et al.Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophth Vis Sci. 2009; 50(10):4982–4991.10.1167/iovs.09-3639

    Crossref MedlineGoogle Scholar
  • 22.Fein JG, Branchini LA, Manjunath V, et al.Analysis of short-term change in subfoveal choroidal thickness in eyes with age-related macular degeneration using optical coherence tomography. Ophthalmic Surg Lasers Imaging Retina. 2014; 45(1):32–37.10.3928/23258160-20131220-04

    LinkGoogle Scholar
  • 23.Kim S, Oh J, Kwon S, et al.Comparison of Choroidal Thickness among Patients with Healthy Eyes, Early Age-Related Maculopathy, Neovascular Age-Related Macular Degeneration, Central Serous Chorioretinopathy, and Polypoidal Choroidal Vasculopathy. Retina-J Ret Vit Dis. 2011; 31(9):1904–1911.

    MedlineGoogle Scholar
  • 24.Makita S, Hong Y, Yamanari M, et al.Optical coherence angiography. Opt Express. 2006; 14(17):7821–7840.10.1364/OE.14.007821

    Crossref MedlineGoogle Scholar
  • 25.Fingler J, Schwartz D, Yang CH, et al.Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt Express. 2007; 15(20):12636–12653.10.1364/OE.15.012636

    Crossref MedlineGoogle Scholar
  • 26.Tao YK, Davis AM, Izatt JA. Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. Opt Express. 2008; 16(16):12350–12361.10.1364/OE.16.012350

    Crossref MedlineGoogle Scholar
  • 27.An L, Wang RKK. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express. 2008; 16(15):11438–11452.10.1364/OE.16.011438

    Crossref MedlineGoogle Scholar
  • 28.Mariampillai A, Standish BA, Moriyama EH, et al.Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008; 33(13):1530–1532.10.1364/OL.33.001530

    Crossref MedlineGoogle Scholar
  • 29.Vakoc BJ, Lanning RM, Tyrrell JA, et al.Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med. 2009; 15(10):1219–1223.10.1038/nm.1971

    Crossref MedlineGoogle Scholar
  • 30.Yu LF, Chen ZP. Doppler variance imaging for three-dimensional retina and choroid angiography. J Biomed Opt. 2010; 15(1):1–4.10.1117/1.3302806

    CrossrefGoogle Scholar
  • 31.Jonathan E, Enfield J, Leahy MJ. Correlation mapping: rapid method for retrieving microcirculation morphology from optical coherence tomography intensity images. P Soc Photo-Opt Ins. 2011; 7898(1):1–5.

    Google Scholar
  • 32.Blatter C, Klein T, Grajciar B, et al.Ultrahigh-speed non-invasive widefield angiography. J Biomed Opt. 2012; 17(7):1–4.10.1117/1.JBO.17.7.070505

    CrossrefGoogle Scholar
  • 33.Jia YL, Tan O, Tokayer J, et al.Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012; 20(4):4710–4725.10.1364/OE.20.004710

    Crossref MedlineGoogle Scholar
  • 34.Choi W, Mohler KJ, Potsaid B, et al.Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLOS ONE. 2013; 8(12):e81499.10.1371/journal.pone.0081499

    Crossref MedlineGoogle Scholar
  • 35.Schwartz DM, Fingler J, Kim DY, et al.Phase-variance optical coherence tomography: a technique for noninvasive angiography. Ophthalmology. 2014; 121(1):180–187.10.1016/j.ophtha.2013.09.002

    Crossref MedlineGoogle Scholar
  • 36.Grulkowski I, Liu JJ, Potsaid B, et al.Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed Opt Express. 2012; 3(11):2733–2751.10.1364/BOE.3.002733

    Crossref MedlineGoogle Scholar
  • 37.Choi W, Potsaid B, Jayaraman V, et al.Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source. Opt Lett. 2013; 38(3):338–340.10.1364/OL.38.000338

    Crossref MedlineGoogle Scholar
  • 38.Guizar-Sicairos M, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. Opt Lett. 2008; 33(2):156–158.10.1364/OL.33.000156

    Crossref MedlineGoogle Scholar
  • 39.Sunness JS, Gonzalez-Baron J, Bressler NM, et al.The development of choroidal neovascularization in eyes with the geographic atrophy form of age-related macular degeneration. Ophthalmology. 1999; 106(5):910–919.10.1016/S0161-6420(99)00509-6

    Crossref MedlineGoogle Scholar
  • 40.Ramrattan RS, van der Schaft TL, Mooy CM, et al.Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophth Vis Sci. 1994; 35(6):2857–2864.

    MedlineGoogle Scholar
  • 41.Flower RW, von Kerczek C, Zhu L, et al.Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration. Am J Ophthalmol. 2001; 132(1):85–93.10.1016/S0002-9394(01)00872-8

    Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×