Abstract
Lineage tracing can provide key insights into the development of tissues, such as the retina. Yet it is not possible to manipulate human cells during embryogenesis. The authors observed a distinct phenotype in female carriers of X-linked disorders, in particular, carriers of choroideremia caused by mutations in CHM, encoding Rab escort protein-1. The authors found that X chromosome inactivation provides a method for retinal lineage tracing in human patients. Live imaging of female carriers displays a developmental pattern that is different within the peripheral retina compared with the posterior retina and provides important insights into the development and migration of retinal cells.
[Ophthalmic Surg Lasers Imaging Retina. 2019;50:e158–e162.]
- 1.Liu W, Cvekl A. Six3 in a small population of progenitors at E8.5 is required for neuroretinal specification via regulating cell signaling and survival in mice. Dev Biol. 2017; 428(1):164–175.
10.1016/j.ydbio.2017.05.026 > Crossref MedlineGoogle Scholar - 2.Beier KT, Samson ME, Matsuda T, Cepko CL. Conditional expression of the TVA receptor allows clonal analysis of descendants from Cre-expressing progenitor cells. Dev Biol. 2011; 353(2):309–320.
10.1016/j.ydbio.2011.03.004 > Crossref MedlineGoogle Scholar - 3.Chen X, Wang S, Xu H, Evidence for a retinal progenitor cell in the postnatal and adult mouse. Stem Cell Res. 2017; 23:20–32.
10.1016/j.scr.2017.06.010 > Crossref MedlineGoogle Scholar - 4.Bélanger MC, Robert B, Cayouette M. Msx1-positive progenitors in the retinal ciliary margin give rise to both neural and non-neural progenies in mammals. Dev Cell. 2017; 40(2):137–150.
10.1016/j.devcel.2016.11.020 > Crossref MedlineGoogle Scholar - 5.Hafler BP, Surzenko N, Beier KT, Transcription factor Olig2 defines subpopulations of retinal progenitor cells biased toward specific cell fates. Proc Natl Acad Sci USA. 2012; 109(20):7882–7887.
10.1073/pnas.1203138109 > Crossref MedlineGoogle Scholar - 6.Wang S, Cepko CL. Photoreceptor fate determination in the vertebrate retina. Invest Ophthalmol Vis Sci. 2016; 57(5):ORSFe1–6.
10.1167/iovs.15-17672 > Crossref MedlineGoogle Scholar - 7.Roberts MF, Fishman GA, Roberts DK, Retrospective, longitudinal, and cross sectional study of visual acuity impairment in choroideraemia. Br J Ophthalmol. 2002; 86(6):658–662.
10.1136/bjo.86.6.658 > Crossref MedlineGoogle Scholar - 8.Edwards TL, Groppe M, Jolly JK, Downes SM, MacLaren RE. Correlation of retinal structure and function in choroideremia carriers. Ophthalmology. 2015; 122(6):1274–1276.
10.1016/j.ophtha.2014.12.036 > Crossref MedlineGoogle Scholar - 9.Meyer CH, Freyschmidt-Paul P, Happle R, Kroll P. Unilateral linear hyperpigmentation of the skin with ipsilateral sectorial hyperpigmentation of the retina. Am J Med Genet A. 2004; 126A(1):89–92.
10.1002/ajmg.a.20483 > Crossref MedlineGoogle Scholar - 10.Lang GE, Rott HD, Pfeiffer RA. X-linked ocular albinism. Characteristic pattern of affection in female carriers. Ophthalmic Paediatr Genet. 1990; 11(4):265–271.
10.3109/13816819009015712 > Crossref MedlineGoogle Scholar - 11.Wu AL, Wang JP, Tseng YJ, Multimodal imaging of mosaic retinopathy in carriers of hereditary X-linked recessive diseases. Retina. 2018; 38(5):1047–1057.
10.1097/IAE.0000000000001629 > Crossref MedlineGoogle Scholar - 12.Bassuk AG, Sujirakul T, Tsang SH, Mahajan VB. A novel RPGR mutation masquerading as Stargardt disease. Br J Ophthalmol. 2014; 98(5):709–711.
10.1136/bjophthalmol-2013-304822 > Crossref MedlineGoogle Scholar - 13.Fahim AT, Daiger SP. The role of X-chromosome inactivation in retinal development and disease. Adv Exp Med Biol. 2016; 854:325–331.
10.1007/978-3-319-17121-0_43 > Crossref MedlineGoogle Scholar - 14.Lyon MF. X-chromosome inactivation and human genetic disease. Acta Paediatr Suppl. 2002; 91(439)107–112.
10.1111/j.1651-2227.2002.tb03120.x > Crossref MedlineGoogle Scholar - 15.Amos-Landgraf JM, Cottle A, Plenge RM, X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet. 2006; 79(3):493–499.
10.1086/507565 > Crossref MedlineGoogle Scholar - 16.Perez-Cano HJ, Garnica-Hayashi RE, Zenteno JC. CHM gene molecular analysis and X-chromosome inactivation pattern determination in two families with choroideremia. Am J Med Genet A. 2009; 149A(10):2134–2140.
10.1002/ajmg.a.32727 > Crossref MedlineGoogle Scholar - 17.Sengillo JD, Lee W, Bakhourn MF, Cho GY, Chiang JP, Tsang SH. Choroideremia associated with a novel synonymous mutation in gene encoding Rep-1. Retin Cases Brief Rep. 2018; 12Suppl 1:S67–S71.
10.1097/ICB.0000000000000647 > Crossref MedlineGoogle Scholar - 18.Ma KK, Lin J, Boudreault K, Chen RW, Tsang SH. Phenotyping choroideremia and its carrier state with multimodal imaging techniques. Retin Cases Brief Rep. 2017; 11Suppl 1:S178–S181.
10.1097/ICB.0000000000000419 > Crossref MedlineGoogle Scholar - 19.Wuthisiri W, Lingao MD, Capasso JE, Levin AV. Lyonization in ophthalmology. Curr Opin Ophthalmol. 2013; 24(5):389–397.
10.1097/ICU.0b013e3283641f91 > Crossref MedlineGoogle Scholar - 20.Murro V, Mucciolo DP, Passerini I, Retinal dystrophy and subretinal drusenoid deposits in female choroideremia carriers. Graefes Arch Clin Exp Ophthalmol. 2017; 255(11):2099–2111.
10.1007/s00417-017-3751-5 > Crossref MedlineGoogle Scholar - 21.Thobani A, Anastasakis A, Fishman GA. Microperimetry and OCT findings in female carriers of choroideremia. Ophthalmic Genet. 2010; 31(4):235–239.
10.3109/13816810.2010.518578 > Crossref MedlineGoogle Scholar - 22.Vajaranant TS, Fishman GA, Szlyk JP, Grant-Jordan P, Lindeman M, Seiple W. Detection of mosaic retinal dysfunction in choroideremia carriers electroretinographic and psychophysical testing. Ophthalmology. 2008; 115(4):723–729.
10.1016/j.ophtha.2007.07.032 > Crossref MedlineGoogle Scholar - 23.Syed N, Smith JE, John SK, Seabra MC, Aguirre GD, Milam AH. Evaluation of retinal photoreceptors and pigment epithelium in a female carrier of choroideremia. Ophthalmology. 2001; 108(4):711–720.
10.1016/S0161-6420(00)00643-6 > Crossref MedlineGoogle Scholar - 24.Sahakyan A, Kim R, Chronis C, Human naïve pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell. 2017; 20(1):87–101.
10.1016/j.stem.2016.10.006 > Crossref MedlineGoogle Scholar