Effect of Aqueous Dynamics on Gas Behavior Following Retinal Reattachment Surgery
Abstract
BACKGROUND AND OBJECTIVE:
To determine how the gas concentration in air required to achieve full postoperative vitreous cavity fill varies in different aqueous outflow states.
MATERIALS AND METHODS:
A mathematical model was used to estimate gas dynamics. The change in gas bubble volume over time was calculated in an eye with normal aqueous outflow, ocular hypertension (OHT), and OHT with apraclonidine treatment.
RESULTS:
The concentration required was higher for all gases to achieve a full postoperative fill in OHT eyes versus normal eyes. Optimal gas concentrations were 22.6% for SF6, 13.9% for C2F6, and 11.6% for C3F8. Despite this, in OHT, the fill achieved was 95%, 95%, and 94% for SF6, C2F6, and C3F8, respectively. With apraclonidine, percentage fill improved for all gases.
CONCLUSIONS:
This is the first study to show aqueous outflow affects bubble size and indicates eyes with reduced outflow are at risk of underfill. This can ultimately affect surgical success.
[Ophthalmic Surg Lasers Imaging Retina. 2020;51:522–528.]
- 1.Gupta B, Neffendorf JE, Williamson TH. Trends and emerging patterns of practice in vitreoretinal surgery. Acta Ophthalmol. 2018; 96(7):e889–e890.
10.1111/aos.13102 PMID:27213838 > Crossref MedlineGoogle Scholar - 2.Neffendorf JE, Gupta B, Williamson TH. The role of intraocular gas tamponade in rhegmatogenous retinal detachment: A Synthesis of the Literature. Retina. 2018; 38Suppl 1:S65–S72.
10.1097/iae.0000000000002015 PMID:29280936 > Crossref MedlineGoogle Scholar - 3.Abrams GW, Edelhauser HF, Aaberg TM, Hamilton LH. Dynamics of intravitreal sulfur hexafluoride gas. Invest Ophthalmol. 1974; 13(11):863–868. PMID:
4431486 > MedlineGoogle Scholar - 4.Lincoff H, Maisel JM, Lincoff A. Intravitreal disappearance rates of four perfluorocarbon gases. Arch Ophthalmol. 1984; 102(6):928–929.
10.1001/archopht.1984.01040030748037 PMID:6329150 > Crossref MedlineGoogle Scholar - 5.Peters MA, Abrams GW, Hamilton LH, Burke JM, Schrieber TM. The nonexpansile, equilibrated concentration of perfluoropropane gas in the eye. Am J Ophthalmol. 1985; 100(6):831–839.
10.1016/S0002-9394(14)73376-8 PMID:3000186 > Crossref MedlineGoogle Scholar - 6.Kontos A, Tee J, Stuart A, Shalchi Z, Williamson TH. Duration of intraocular gases following vitreoretinal surgery. Graefes Arch Clin Exp Ophthalmol. 2017; 255(2):231–236.
10.1007/s00417-016-3438-3 PMID:27460279 > Crossref MedlineGoogle Scholar - 7.Intraocular Gases SC. Retina. St. Louis, MO: CV Mosby Co; 1989. > Google Scholar
- 8.Hutter J, Luu H, Schroeder L. A biological model of tamponade gases following pneumatic retinopexy. Curr Eye Res. 2002; 25(4):197–206.
10.1076/ceyr.25.4.197.13487 PMID:12658552 > Crossref MedlineGoogle Scholar - 9.Hall SK, Williamson TH, Guillemaut JY, Goddard T, Baumann AP, Hutter JC. Modeling the dynamics of tamponade multicomponent gases during retina reattachment surgery. American Institute of Chemical Engineers AIChE Journal. 2017; 63(9):3651–3662.
10.1002/aic.15739 > CrossrefGoogle Scholar - 10.Williamson TH, Guillemaut JY, Hall SK, Hutter JC, Goddard T. Theoretical gas concentrations achieving 100% fill of the vitreous cavity in the postoperative period: A Gas Eye Model Study. Retina. 2018; 38Suppl 1:S60–S64.
10.1097/iae.0000000000001963 PMID:29232331 > Crossref MedlineGoogle Scholar - 11.Toris CB, Koepsell SA, Yablonski ME, Camras CB. Aqueous humor dynamics in ocular hypertensive patients. J Glaucoma. 2002; 11(3):253–258.
10.1097/00061198-200206000-00015 PMID:12140404 > Crossref MedlineGoogle Scholar - 12.Alberti M, la Cour M. Nonsupine positioning in macular hole surgery: A Noninferiority Randomized Clinical Trial. Retina. 2016; 36(11):2072–2079.
10.1097/IAE.0000000000001041 PMID:27046458 > Crossref MedlineGoogle Scholar - 13.Toris CB, Tafoya ME, Camras CB, Yablonski ME. Effects of apraclonidine on aqueous humor dynamics in human eyes. Ophthalmology. 1995; 102(3):456–461.
10.1016/S0161-6420(95)31000-7 PMID:7891985 > Crossref MedlineGoogle Scholar - 14.Jacobs PM, Twomey JM, Leaver PK. Behaviour of intraocular gases. Eye (Lond). 1988; 2(Pt 6):660–663.
10.1038/eye.1988.121 PMID:3256505 > Crossref MedlineGoogle Scholar - 15.Costarides AP, Alabata P, Bergstrom C. Elevated intraocular pressure following vitreoretinal surgery. Ophthalmol Clin North Am. 2004; 17(4):507–512, v. v.
10.1016/j.ohc.2004.06.007 PMID:15533743 > Crossref MedlineGoogle Scholar - 16.Lincoff H, Weinberger D, Stergiu P. Air travel with intraocular gas. II. Clinical considerations. Arch Ophthalmol. 1989; 107(6):907–910.
10.1001/archopht.1989.01070010929043 PMID:2730410 > Crossref MedlineGoogle Scholar - 17.Fu AD, McDonald HR, Eliott D, Complications of general anesthesia using nitrous oxide in eyes with preexisting gas bubbles. Retina. 2002; 22(5):569–574.
10.1097/00006982-200210000-00006 PMID:12441721 > Crossref MedlineGoogle Scholar