Directional Reflectivity of the Ellipsoid Zone in Dry Age-Related Macular Degeneration
Abstract
BACKGROUND AND OBJECTIVE:
Ellipsoid zone (EZ) reflectivity on optical coherence tomography (OCT) is affected by the orientation of the scanning beam. The authors sought to determine how directional reflectivity changes in dry age-related macular degeneration (AMD).
PATIENTS AND METHODS:
Retrospective image analysis included 17 control and 20 dry AMD subjects. Directional OCT (D-OCT) was performed using multiple displaced pupil entrance positions. EZ pixel values and apparent incidence angles were measured.
RESULTS:
EZ reflectivity decreased in off-axis scans in controls (P < .001), AMD areas between drusen (P < .001), and AMD areas overlying drusen (P < .001). The magnitude of decrement in EZ reflectivity was significantly higher when incidence angles exceeded 10° in controls than in AMD areas between drusen (P = .024).
CONCLUSION:
EZ reflectivity in dry AMD may vary by incident angle of light less than in controls, possibly indicating alteration of photoreceptor orientation or integrity.
[Ophthalmic Surg Lasers Imaging Retina. 2021;52:145–152.]
- 1. . Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014; 2(2):e106–e116.
10.1016/S2214-109X(13)70145-1 PMID:25104651 Crossref MedlineGoogle Scholar - 2. . Differentiating drusen: drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res. 2016; 53:70–106.
10.1016/j.preteyeres.2016.04.008 PMID:27173377 Crossref MedlineGoogle Scholar - 3. . Clinical classification of age-related macular degeneration. Ophthalmology. 2013; 120(4):844–851.
10.1016/j.ophtha.2012.10.036 PMID:23332590 Crossref MedlineGoogle Scholar - 4. . Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. eLife. 2016; 5:1–22.
10.7554/eLife.14319 PMID:26978795 Crossref MedlineGoogle Scholar - 5. . Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med. 2012; 33(4):295–317.
10.1016/j.mam.2012.04.005 PMID:22542780 Crossref MedlineGoogle Scholar - 6. . The impact of oxidative stress and inflammation on RPE degeneration in nonneovascular AMD. Prog Retin Eye Res. 2017; 60:201–218.
10.1016/j.preteyeres.2017.03.002 PMID:28336424 Crossref MedlineGoogle Scholar - 7. . Optical coherence tomography. Science. 1991; 254(5035):1178–1181.
10.1126/science.1957169 PMID:1957169 Crossref MedlineGoogle Scholar - 8. . Light reflectivity and interference in cone photoreceptors. Biomed Opt Express. 2019; 10(12):6531–6554.
10.1364/BOE.10.006531 PMID:31853415 Crossref MedlineGoogle Scholar - 9. . Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography. Opt Express. 2008; 16(9):6486–6501.
10.1364/OE.16.006486 PMID:18516251 Crossref MedlineGoogle Scholar - 10. . Revealing Henle's fiber layer using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011; 52(3):1486–1492.
10.1167/iovs.10-5946 PMID:21071737 Crossref MedlineGoogle Scholar - 11. . Directional Optical Coherence Tomography Provides Accurate Outer Nuclear Layer and Henle Fiber Layer Measurements. Retina. 2015; 35(8):1511–1520.
10.1097/IAE.0000000000000527 PMID:25829348 Crossref MedlineGoogle Scholar - 12. . Normal Interdigitation Zone Loss by Motion-Tracked OCT. Ophthalmol Retina. 2017; 1(5):394.
10.1016/j.oret.2017.05.005 PMID:31047567 Crossref MedlineGoogle Scholar - 13. . The inner segment/outer segment border seen on optical coherence tomography is less intense in patients with diminished cone function. Invest Ophthalmol Vis Sci. 2011; 52(13):9703–9709.
10.1167/iovs.11-8650 PMID:22110066 Crossref MedlineGoogle Scholar - 14. . Quantitative analysis of the ellipsoid zone intensity in phenotypic variations of intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci. 2017; 58(4):2079–2086.
10.1167/iovs.16-20105 PMID:28388704 Crossref MedlineGoogle Scholar - 15. . Association between visual function and the integrity of residual ellipsoid zone in resolved central serous chorioretinopathy. Sci Rep. 2019; 9(1):12433.
10.1038/s41598-019-48825-7 PMID:31455795 Crossref MedlineGoogle Scholar - 16. . Interpretation of OCT and OCTA images from a histological approach: clinical and experimental implications. Prog Retin Eye Res. 2020; 77:100828.
10.1016/j.preteyeres.2019.100828 PMID:31911236 Crossref MedlineGoogle Scholar - 17. . Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT. Ophthalmic Surg Lasers Imaging. 2010; 41(6)(suppl):S104–S108.
10.3928/15428877-20101031-07 PMID:21117594 LinkGoogle Scholar - 18. . Second reflective band intensity in age-related macular degeneration. Ophthalmology. 2013; 120(6):1307–8.e1.
10.1016/j.ophtha.2012.12.047 PMID:23732057 Crossref MedlineGoogle Scholar - 19. . Directional Optical Coherence Tomography Reveals Reliable Outer Nuclear Layer Measurements. Optom Vis Sci. 2016; 93(7):714–719.
10.1097/OPX.0000000000000861 PMID:27046093 Crossref MedlineGoogle Scholar - 20. . Chromatic visualization of reflectivity variance within hybridized directional OCT images. Opt Coherence Tomogr Coherence Domain Opt Methods Biomed XVII. 2013; 8571:857105-1-7.
10.1117/12.2007141 CrossrefGoogle Scholar - 21. . Image processing with imageJ. Biophoton Int. 2004; 11:36–41. Google Scholar
- 22. . Directional sensitivity of the retina: 75 years of Stiles-Crawford effect. Proc Biol Sci. 2008; 275(1653):2777–2786.
10.1098/rspb.2008.0712 PMID:18765346 Crossref MedlineGoogle Scholar - 23. . Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013; 54(12):7498–7509.
10.1167/iovs.13-12433 PMID:24135755 Crossref MedlineGoogle Scholar - 24. . Photoreceptor perturbation around subretinal drusenoid deposits as revealed by adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol. 2014; 158(3):584–96.e1.
10.1016/j.ajo.2014.05.038 PMID:24907433 Crossref MedlineGoogle Scholar - 25. . Pupil tracking optical coherence tomography for precise control of pupil entry position. Biomed Opt Express. 2015; 6(9):3405–3419.
10.1364/BOE.6.003405 PMID:26417510 Crossref MedlineGoogle Scholar