Skip to main content
Ophthalmic Surgery, Lasers and Imaging Retina, 2021;52(3):145–152
Published Online:https://doi.org/10.3928/23258160-20210302-05Cited by:4

Abstract

BACKGROUND AND OBJECTIVE:

Ellipsoid zone (EZ) reflectivity on optical coherence tomography (OCT) is affected by the orientation of the scanning beam. The authors sought to determine how directional reflectivity changes in dry age-related macular degeneration (AMD).

PATIENTS AND METHODS:

Retrospective image analysis included 17 control and 20 dry AMD subjects. Directional OCT (D-OCT) was performed using multiple displaced pupil entrance positions. EZ pixel values and apparent incidence angles were measured.

RESULTS:

EZ reflectivity decreased in off-axis scans in controls (P < .001), AMD areas between drusen (P < .001), and AMD areas overlying drusen (P < .001). The magnitude of decrement in EZ reflectivity was significantly higher when incidence angles exceeded 10° in controls than in AMD areas between drusen (P = .024).

CONCLUSION:

EZ reflectivity in dry AMD may vary by incident angle of light less than in controls, possibly indicating alteration of photoreceptor orientation or integrity.

[Ophthalmic Surg Lasers Imaging Retina. 2021;52:145–152.]

  • 1.Wong WL, Su X, Li Xet al.. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014; 2(2):e106–e116. 10.1016/S2214-109X(13)70145-1 PMID:25104651

    Crossref MedlineGoogle Scholar
  • 2.Khan KN, Mahroo OA, Khan RSet al.. Differentiating drusen: drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res. 2016; 53:70–106. 10.1016/j.preteyeres.2016.04.008 PMID:27173377

    Crossref MedlineGoogle Scholar
  • 3.Ferris FL, Wilkinson CP, Bird Aet al.Beckman Initiative for Macular Research Classification Committee. Clinical classification of age-related macular degeneration. Ophthalmology. 2013; 120(4):844–851. 10.1016/j.ophtha.2012.10.036 PMID:23332590

    Crossref MedlineGoogle Scholar
  • 4.Kurihara T, Westenskow PD, Gantner MLet al.. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. eLife. 2016; 5:1–22. 10.7554/eLife.14319 PMID:26978795

    Crossref MedlineGoogle Scholar
  • 5.Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med. 2012; 33(4):295–317. 10.1016/j.mam.2012.04.005 PMID:22542780

    Crossref MedlineGoogle Scholar
  • 6.Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in nonneovascular AMD. Prog Retin Eye Res. 2017; 60:201–218. 10.1016/j.preteyeres.2017.03.002 PMID:28336424

    Crossref MedlineGoogle Scholar
  • 7.Huang D, Swanson EA, Lin CPet al.. Optical coherence tomography. Science. 1991; 254(5035):1178–1181. 10.1126/science.1957169 PMID:1957169

    Crossref MedlineGoogle Scholar
  • 8.Meadway A, Sincich LC. Light reflectivity and interference in cone photoreceptors. Biomed Opt Express. 2019; 10(12):6531–6554. 10.1364/BOE.10.006531 PMID:31853415

    Crossref MedlineGoogle Scholar
  • 9.Gao W, Cense B, Zhang Y, Jonnal RS, Miller DT. Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography. Opt Express. 2008; 16(9):6486–6501. 10.1364/OE.16.006486 PMID:18516251

    Crossref MedlineGoogle Scholar
  • 10.Lujan BJ, Roorda A, Knighton RW, Carroll J. Revealing Henle's fiber layer using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011; 52(3):1486–1492. 10.1167/iovs.10-5946 PMID:21071737

    Crossref MedlineGoogle Scholar
  • 11.Lujan BJ, Roorda A, Croskrey JAet al.. Directional Optical Coherence Tomography Provides Accurate Outer Nuclear Layer and Henle Fiber Layer Measurements. Retina. 2015; 35(8):1511–1520. 10.1097/IAE.0000000000000527 PMID:25829348

    Crossref MedlineGoogle Scholar
  • 12.Park DW, Lujan BJ. Normal Interdigitation Zone Loss by Motion-Tracked OCT. Ophthalmol Retina. 2017; 1(5):394. 10.1016/j.oret.2017.05.005 PMID:31047567

    Crossref MedlineGoogle Scholar
  • 13.Hood DC, Zhang X, Ramachandran Ret al.. The inner segment/outer segment border seen on optical coherence tomography is less intense in patients with diminished cone function. Invest Ophthalmol Vis Sci. 2011; 52(13):9703–9709. 10.1167/iovs.11-8650 PMID:22110066

    Crossref MedlineGoogle Scholar
  • 14.Gin TJ, Wu Z, Chew SKH, Guymer RH, Luu CD. Quantitative analysis of the ellipsoid zone intensity in phenotypic variations of intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci. 2017; 58(4):2079–2086. 10.1167/iovs.16-20105 PMID:28388704

    Crossref MedlineGoogle Scholar
  • 15.Fujita A, Aoyama Y, Tsuneyoshi Set al.. Association between visual function and the integrity of residual ellipsoid zone in resolved central serous chorioretinopathy. Sci Rep. 2019; 9(1):12433. 10.1038/s41598-019-48825-7 PMID:31455795

    Crossref MedlineGoogle Scholar
  • 16.Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez Xet al.. Interpretation of OCT and OCTA images from a histological approach: clinical and experimental implications. Prog Retin Eye Res. 2020; 77:100828. 10.1016/j.preteyeres.2019.100828 PMID:31911236

    Crossref MedlineGoogle Scholar
  • 17.Godara P, Siebe C, Rha J, Michaelides M, Carroll J. Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT. Ophthalmic Surg Lasers Imaging. 2010; 41(6)(suppl):S104–S108. 10.3928/15428877-20101031-07 PMID:21117594

    LinkGoogle Scholar
  • 18.Wu Z, Ayton LN, Guymer RH, Luu CD. Second reflective band intensity in age-related macular degeneration. Ophthalmology. 2013; 120(6):1307–8.e1. 10.1016/j.ophtha.2012.12.047 PMID:23732057

    Crossref MedlineGoogle Scholar
  • 19.Tong KK, Lujan BJ, Zhou Y, Lin MC. Directional Optical Coherence Tomography Reveals Reliable Outer Nuclear Layer Measurements. Optom Vis Sci. 2016; 93(7):714–719. 10.1097/OPX.0000000000000861 PMID:27046093

    Crossref MedlineGoogle Scholar
  • 20.Makhijani VS, Roorda A, Bayabo JK, Tong KK, Rivera-Carpio CA, Lujan BJ. Chromatic visualization of reflectivity variance within hybridized directional OCT images. Opt Coherence Tomogr Coherence Domain Opt Methods Biomed XVII. 2013; 8571:857105-1-7. 10.1117/12.2007141

    CrossrefGoogle Scholar
  • 21.Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with imageJ. Biophoton Int. 2004; 11:36–41.

    Google Scholar
  • 22.Westheimer G. Directional sensitivity of the retina: 75 years of Stiles-Crawford effect. Proc Biol Sci. 2008; 275(1653):2777–2786. 10.1098/rspb.2008.0712 PMID:18765346

    Crossref MedlineGoogle Scholar
  • 23.Zayit-Soudry S, Duncan JL, Syed R, Menghini M, Roorda AJ. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013; 54(12):7498–7509. 10.1167/iovs.13-12433 PMID:24135755

    Crossref MedlineGoogle Scholar
  • 24.Zhang Y, Wang X, Rivero EBet al.. Photoreceptor perturbation around subretinal drusenoid deposits as revealed by adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol. 2014; 158(3):584–96.e1. 10.1016/j.ajo.2014.05.038 PMID:24907433

    Crossref MedlineGoogle Scholar
  • 25.Carrasco-Zevallos O, Nankivil D, Keller B, Viehland C, Lujan BJ, Izatt JA. Pupil tracking optical coherence tomography for precise control of pupil entry position. Biomed Opt Express. 2015; 6(9):3405–3419. 10.1364/BOE.6.003405 PMID:26417510

    Crossref MedlineGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×