Skip to main content
Published Online:https://doi.org/10.3928/23258160-20210821-01

Abstract

BACKGROUND AND OBJECTIVES:

To describe the presentation, management, and clinical outcomes of branch retinal vein occlusion (BRVO) in African American patients compared to patients of other racial or ethnic backgrounds.

PATIENTS AND METHODS:

This retrospective cohort study included eyes diagnosed with BRVO and macular edema at a tertiary referral center. Presenting features, treatment, and outcomes were compared based on racial or ethnic backgrounds.

RESULTS:

The study included 285 eyes: 21.8% African American, 78.2% other. African American patients were more likely to have comorbid diabetes (P = .012), open-angle glaucoma (P < .001), and to present with subretinal fluid (P = .049); multivariate analysis showed race and ethnicity alone may not fully explain presenting subretinal fluid (odds ratio = 2.807; 95% CI, 0.997 to 7.903; P = .051). There was no difference in other comparisons of clinical outcomes or treatment burden, including visual acuity, duration, or treatment method.

CONCLUSIONS:

Despite significant differences at presentation, the management and outcomes of BRVO did not differ significantly between African American patients and patients of other racial and ethnic backgrounds.

[Ophthalmic Surg Lasers Imaging Retina. 2021;52:492–497.]

  • 1.Klein R, Klein BE, Moss SE, Meuer SM. The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study. Trans Am Ophthalmol Soc. 2000; 98:133–141. PMID:11190017

    Google Scholar
  • 2.McIntosh RL, Mohamed Q, Saw SM, Wong TY. Interventions for branch retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2007; 114(5):835–854. 10.1016/j.ophtha.2007.01.010 PMID:17397923

    CrossrefGoogle Scholar
  • 3.Song P, Xu Y, Zha M, Zhang Y, Rudan I. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors. J Glob Health. 2019; 9(1):010427–010427. 10.7189/jogh.09.010427 PMID:31131101

    CrossrefGoogle Scholar
  • 4.Hayreh SS. Ocular vascular occlusive disorders: natural history of visual outcome. Prog Retin Eye Res. 2014; 41:1–25. 10.1016/j.preteyeres.2014.04.001 PMID:24769221

    CrossrefGoogle Scholar
  • 5.Iida-Miwa Y, Muraoka Y, Iida Yet al.. Branch retinal vein occlusion: treatment outcomes according to the retinal nonperfusion area, clinical subtype, and crossing pattern. Sci Rep. 2019; 9(1):6569–6569. 10.1038/s41598-019-42982-5 PMID:31024035

    CrossrefGoogle Scholar
  • 6.The Eye Disease Case-control Study Group. Risk factors for branch retinal vein occlusion. Am J Ophthalmol. 1993; 116(3):286–296. 10.1016/S0002-9394(14)71345-5 PMID:8357052

    CrossrefGoogle Scholar
  • 7.Rogers S, McIntosh RL, Cheung Net al.International Eye Disease Consortium. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010; 117(2):313–9.e1. 10.1016/j.ophtha.2009.07.017 PMID:20022117

    CrossrefGoogle Scholar
  • 8.Kiew SY, Thomas GN, Thomas AS, Fekrat S. Characteristics of central retinal vein occlusion in African Americans. J Vitreoretin Dis. 2020; 4(3):186–191. 10.1177/2474126419882829

    CrossrefGoogle Scholar
  • 9.Stem MS, Talwar N, Comer GM, Stein JD. A longitudinal analysis of risk factors associated with central retinal vein occlusion. Ophthalmology. 2013; 120(2):362–370. 10.1016/j.ophtha.2012.07.080 PMID:23177364

    CrossrefGoogle Scholar
  • 10.Rath EZ, Frank RN, Shin DH, Kim C. Risk factors for retinal vein occlusions. A case-control study. Ophthalmology. 1992; 99(4):509–514. 10.1016/S0161-6420(92)31940-2 PMID:1584567

    CrossrefGoogle Scholar
  • 11.Fazio MA, Johnstone JK, Smith B, Wang L, Girkin CA. Displacement of the lamina cribrosa in response to acute intraocular pressure elevation in normal individuals of African and European descent. Invest Ophthalmol Vis Sci. 2016; 57(7):3331–3339. 10.1167/iovs.15-17940 PMID:27367500

    CrossrefGoogle Scholar
  • 12.Girkin CA, Sample PA, Liebmann JMet al.ADAGES Group. African Descent and Glaucoma Evaluation Study (ADAGES): II. Ancestry differences in optic disc, retinal nerve fiber layer, and macular structure in healthy subjects. Arch Ophthalmol. 2010; 128(5):541–550. 10.1001/archophthalmol.2010.49 PMID:20457974

    CrossrefGoogle Scholar
  • 13.Cheung N, Klein R, Wang JJet al.. Traditional and novel cardiovascular risk factors for retinal vein occlusion: the multiethnic study of atherosclerosis. Invest Ophthalmol Vis Sci. 2008; 49(10):4297–4302. 10.1167/iovs.08-1826 PMID:18539932

    CrossrefGoogle Scholar
  • 14.Newman-Casey PA, Stem M, Talwar N, Musch DC, Besirli CG, Stein JD. Risk factors associated with developing branch retinal vein occlusion among enrollees in a United States managed care plan. Ophthalmology. 2014; 121(10):1939–1948. 10.1016/j.ophtha.2014.04.045 PMID:24953793

    CrossrefGoogle Scholar
  • 15.Yin X, Li J, Zhang B, Lu P. Association of glaucoma with risk of retinal vein occlusion: a meta-analysis. Acta Ophthalmol. 2019; 97(7):652–659. 10.1111/aos.14141 PMID:31125174

    CrossrefGoogle Scholar
  • 16.Frucht J, Shapiro A, Merin S. Intraocular pressure in retinal vein occlusion. Br J Ophthalmol. 1984; 68(1):26–28. 10.1136/bjo.68.1.26 PMID:6689932

    CrossrefGoogle Scholar
  • 17.Luntz MH, Schenker HI. Retinal vascular accidents in glaucoma and ocular hypertension. Surv Ophthalmol. 1980; 25(3):163–167. 10.1016/0039-6257(80)90093-4 PMID:7466595

    CrossrefGoogle Scholar
  • 18.Johnston RL, Brucker AJ, Steinmann W, Hoffman ME, Holmes JH. Risk factors of branch retinal vein occlusion. Arch Ophthalmol. 1985; 103(12):1831–1832. 10.1001/archopht.1985.01050120065021 PMID:4074173

    CrossrefGoogle Scholar
  • 19.Zhou JQ, Xu L, Wang Set al.. The 10-year incidence and risk factors of retinal vein occlusion: the Beijing eye study. Ophthalmology. 2013; 120(4):803–808. 10.1016/j.ophtha.2012.09.033 PMID:23352194

    CrossrefGoogle Scholar
  • 20.Cugati S, Wang JJ, Rochtchina E, Mitchell P. Ten-year incidence of retinal vein occlusion in an older population: the Blue Mountains Eye Study. Arch Ophthalmol. 2006; 124(5):726–732. 10.1001/archopht.124.5.726 PMID:16682596

    CrossrefGoogle Scholar
  • 21.Mitchell P, Smith W, Chang A. Prevalence and associations of retinal vein occlusion in Australia. The Blue Mountains Eye Study. Arch Ophthalmol. 1996; 114(10):1243–1247. 10.1001/archopht.1996.01100140443012 PMID:8859084

    CrossrefGoogle Scholar
  • 22.Augood C, Fletcher A, Bentham Get al.. Methods for a population-based study of the prevalence of and risk factors for age-related maculopathy and macular degeneration in elderly European populations: the EUREYE study. Ophthalmic Epidemiol. 2004; 11(2):117–129. 10.1076/opep.11.2.117.28160 PMID:15255027

    CrossrefGoogle Scholar
  • 23.Haller JA, Bandello F, Belfort Ret al.Ozurdex GENEVA Study Group. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology. 2010; 117(6):1134–1146.e3. 10.1016/j.ophtha.2010.03.032 PMID:20417567

    CrossrefGoogle Scholar
  • 24.Scott IU, Ip MS, VanVeldhuisen PCet al.SCORE Study Research Group. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular Edema secondary to branch retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch Ophthalmol. 2009; 127(9):1115–1128. 10.1001/archophthalmol.2009.233 PMID:19752420

    CrossrefGoogle Scholar
  • 25.Campochiaro PA, Heier JS, Feiner Let al.BRAVO Investigators. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010; 117(6):1102–1112.e1. 10.1016/j.ophtha.2010.02.021 PMID:20398941

    CrossrefGoogle Scholar
  • 26.Gao X, Obeid A, Adam MK, Hyman L, Ho AC, Hsu J. Loss to follow-up in patients with retinal vein occlusion undergoing intravitreal anti-VEGF injections. Ophthalmic Surg Lasers Imaging Retina. 2019; 50(3):159–166. 10.3928/23258160-20190301-05 PMID:30893449

    LinkGoogle Scholar

We use cookies on this site to enhance your user experience. For a complete overview of all the cookies used, please see our privacy policy.

×
  • Received3/2/21 12:00 AM
  • Accepted4/15/21 12:00 AM
  • Published online9/1/21 12:00 AM
  • __article__history--ppub9/1/21 12:00 AM