Long-term Visual and Refractive Outcomes After LASIK for High Myopia and Astigmatism From −8.00 to −14.25 D
Abstract
PURPOSE:
To evaluate outcomes of high myopic LASIK using the MEL 80 excimer laser (Carl Zeiss Meditec, Jena, Germany).
METHODS:
Retrospective analysis of 479 consecutive high myopic LASIK procedures (318 patients) using the MEL 80 excimer laser and VisuMax femtosecond laser (Carl Zeiss Meditec) in 77% of cases or zero compression Hansatome microkeratome (Bausch & Lomb, Rochester, NY) in 23% of cases. Inclusion criteria were preoperative spherical equivalent refraction (SEQ) of between −8.00 and −14.25 diopters (D) and corrected distance visual acuity (CDVA) of 20/20 or better. Patients were observed for a minimum of 1 year. Flap thickness was between 80 and 160 µm and optical zone was between 5.75 and 6.50 mm. Standard outcomes analysis was performed.
RESULTS:
Mean attempted SEQ was −9.39 ± 1.22 D (range: −8.00 to −14.18 D) and mean cylinder was −1.03 ± 0.84 D (range: 0.00 to −4.50 D). Mean age was 37 ± 9 years (range: 21 to 60 years) with 54% female patients. Postoperative SEQ was ±0.50 D in 55% and ±1.00 D in 83% of eyes after primary treatment. After re-treatment, 69% of eyes were within ±0.50 D and 95% were within ±1.00 D. UDVA was 20/20 or better in 89% of eyes after final treatment. One line of CDVA was lost in 3% of eyes and no eyes lost two or more lines. Statistically significant increases (P < .001) were measured in contrast sensitivity (CSV-1000) at 12 and 18 cycles per degree.
CONCLUSIONS:
The MEL 80 excimer laser was found to achieve high efficacy and safety for treatment of high myopia between −8.00 and −14.25 D and up to −4.50 D of cylinder.
[J Refract Surg. 2016;32(5):290–297.]
- 1.Knorz MC, Liermann A, Seiberth V, Steiner H, Wiesinger B. Laser in situ keratomileusis to correct myopia of −6.00 to −29.00 diopters. J Refract Surg. 1996; 12:575–584. > LinkGoogle Scholar
- 2.Kim HM, Jung HR. Laser assisted in situ keratomileusis for high myopia. Ophthalmic Surg Lasers. 1996; 27(5 suppl):S508–S511. > MedlineGoogle Scholar
- 3.Condon PI, Mulhern M, Fulcher T, Foley-Nolan A, O'Keefe M. Laser intrastromal keratomileusis for high myopia and myopic astigmatism. Br J Ophthalmol. 1997; 81:199–206.
10.1136/bjo.81.3.199 > Crossref MedlineGoogle Scholar - 4.Tsai RJ. Laser in situ keratomileusis for myopia of −2 to −25 diopters. J Refract Surg. 1997; 13:S427–S429. > LinkGoogle Scholar
- 5.Marinho A, Pinto MC, Pinto R, Vaz F, Neves MC. LASIK for high myopia: one year experience. Ophthalmic Surg Lasers. 1996; 27(5 suppl):S517–S520. > MedlineGoogle Scholar
- 6.Knorz MC, Wiesinger B, Liermann A, Seiberth V, Liesenhoff H. Laser in situ keratomileusis for moderate and high myopia and myopic astigmatism. Ophthalmology. 1998; 105:932–940.
10.1016/S0161-6420(98)95040-0 > Crossref MedlineGoogle Scholar - 7.Corbett MC, Verma S, O'Brart DP, Oliver KM, Heacock G, Marshall J. Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy. Br J Ophthalmol. 1996; 80:224–234.
10.1136/bjo.80.3.224 > Crossref MedlineGoogle Scholar - 8.Gartry DS, Kerr Muir MG, Marshall J. Excimer laser photorefractive keratectomy: 18-month follow-up. Ophthalmology. 1992; 99:1209–1219.
10.1016/S0161-6420(92)31821-4 > Crossref MedlineGoogle Scholar - 9.Chayet AS, Assil KK, Montes M, Espinosa-Lagana M, Castellanos A, Tsioulias G. Regression and its mechanisms after laser in situ keratomileusis in moderate and high myopia. Ophthalmology. 1998; 105:1194–1199.
10.1016/S0161-6420(98)97020-8 > Crossref MedlineGoogle Scholar - 10.O'Brart DP, Corbett MC, Lohmann CP, Kerr Muir MG, Marshall J. The effects of ablation diameter on the outcome of excimer laser photorefractive keratectomy: a prospective, randomized, double-blind study. Arch Ophthalmol. 1995; 113:438–443.
10.1001/archopht.1995.01100040054026 > Crossref MedlineGoogle Scholar - 11.O'Brart DP, Corbett MC, Verma S, Effects of ablation diameter, depth, and edge contour on the outcome of photorefractive keratectomy. J Refract Surg. 1996; 12:50–60. > LinkGoogle Scholar
- 12.Seiler T, Genth U, Holschbach A, Derse M. Aspheric photorefractive keratectomy with excimer laser. Refract Corneal Surg. 1993; 9:166–172. > LinkGoogle Scholar
- 13.Kohnen T, Strenger A, Klaproth OK. Basic knowledge of refractive surgery: correction of refractive errors using modern surgical procedures. Dtsch Arztebl Int. 2008; 105:163–170. > MedlineGoogle Scholar
- 14.Barsam A, Allan BD. Excimer laser refractive surgery versus phakic intraocular lenses for the correction of moderate to high myopia. Cochrane Database Syst Rev2010:CD007679. > MedlineGoogle Scholar
- 15.Barsam A, Allan BD. Excimer laser refractive surgery versus phakic intraocular lenses for the correction of moderate to high myopia. Cochrane Database Syst Rev2014;6:CD007679. > MedlineGoogle Scholar
- 16.El Danasoury MA, El Maghraby A, Gamali TO. Comparison of iris-fixed Artisan lens implantation with excimer laser in situ keratomileusis in correcting myopia between −9.00 and −19.50 diopters: a randomized study. Ophthalmology. 2002; 109:955–964.
10.1016/S0161-6420(02)00964-8 > Crossref MedlineGoogle Scholar - 17.Schallhorn S, Tanzer D, Sanders DR, Sanders ML. Randomized prospective comparison of visian toric implantable collamer lens and conventional photorefractive keratectomy for moderate to high myopic astigmatism. J Refract Surg. 2007; 23:853–867. > LinkGoogle Scholar
- 18.Malecaze FJ, Hulin H, Bierer P, A randomized paired eye comparison of two techniques for treating moderately high myopia: LASIK and artisan phakic lens. Ophthalmology. 2002; 109:1622–1630.
10.1016/S0161-6420(02)01164-8 > Crossref MedlineGoogle Scholar - 19.Reinstein DZ, Archer TJ, Gobbe M. LASIK for myopic astigmatism and presbyopia using non-linear aspheric micro-monovision with the Carl Zeiss Meditec MEL 80 Platform. J Refract Surg. 2011; 27:23–37.
10.3928/1081597X-20100212-04 > LinkGoogle Scholar - 20.Srivannaboon S, Reinstein DZ, Archer TJ, Chansue E. Spherical aberration from myopic excimer laser ablation for aspheric and non-aspheric profiles. Optom Vis Sci. 2012; 89:1211–1218.
10.1097/OPX.0b013e318263c2b2 > Crossref MedlineGoogle Scholar - 21.Mrochen M, Seiler T. Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery. J Refract Surg. 2001; 17:S584–S587. > LinkGoogle Scholar
- 22.Dupps WJ, Roberts C. Effect of acute biomechanical changes on corneal curvature after photokeratectomy. J Refract Surg. 2001; 17:658–669. > LinkGoogle Scholar
- 23.Reinstein DZ, Archer TJ, Gobbe M. Combined corneal topography and corneal wavefront data in the treatment of corneal irregularity and refractive error in LASIK or PRK using the Carl Zeiss Meditec MEL80 and CRS Master. J Refract Surg. 2009; 25:503–515. > LinkGoogle Scholar
- 24.Lim DH, Keum JE, Ju WK, Lee JH, Chung TY, Chung ES. Prospective contralateral eye study to compare 80- and 120-um flap LASIK using the VisuMax femtosecond laser. J Refract Surg. 2013; 29:462–468.
10.3928/1081597X-20130617-04 > LinkGoogle Scholar - 25.Randleman JB. Post-laser in-situ keratomileusis ectasia: current understanding and future directions. Curr Opin Ophthalmol. 2006; 17:406–412.
10.1097/01.icu.0000233963.26628.f0 > Crossref MedlineGoogle Scholar - 26.Randleman JB, Caster AI, Banning CS, Stulting RD. Corneal ectasia after photorefractive keratectomy. J Cataract Refract Surg. 2006; 32:1395–1398.
10.1016/j.jcrs.2006.02.078 > Crossref MedlineGoogle Scholar - 27.Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology. 2003; 110:267–275.
10.1016/S0161-6420(02)01727-X > Crossref MedlineGoogle Scholar - 28.Malecaze F, Coullet J, Calvas P, Fournié P, Arné JL, Brodaty C. Corneal ectasia after photorefractive keratectomy for low myopia. Ophthalmology. 2006; 113:742–746.
10.1016/j.ophtha.2005.11.023 > Crossref MedlineGoogle Scholar - 29.Health Quality Ontario. Phakic intraocular lenses for the treatment of refractive errors: an evidence-based analysis. Ont Health Technol Assess Ser. 2009; 9:1–120. > Google Scholar
- 30.Chen LJ, Chang YJ, Kuo JC, Rajagopal R, Azar DT. Metaanalysis of cataract development after phakic intraocular lens surgery. J Cataract Refract Surg. 2008; 34:1181–1200.
10.1016/j.jcrs.2008.03.029 > Crossref MedlineGoogle Scholar - 31.Alió JL, Toffaha BT, Peña-Garcia P, Sádaba LM, Barraquer RI. Phakic intraocular lens explantation: causes in 240 cases. J Refract Surg. 2015; 31:30–35.
10.3928/1081597X-20141202-01 > LinkGoogle Scholar - 32.Knorz MC, Lane SS, Holland SP. Angle-supported phakic intraocular lens for correction of moderate to high myopia: three-year interim results in international multicenter studies. J Cataract Refract Surg. 2011; 37:469–480.
10.1016/j.jcrs.2010.09.025 > Crossref MedlineGoogle Scholar - 33.Guell JL, Morral M, Gris O, Gaytan J, Sisquella M, Manero F. Five-year follow-up of 399 Phakic Artisan-Verisyse implantation for myopia, hyperopia, and/or astigmatism. Ophthalmology. 2008; 115:1002–1012.
10.1016/j.ophtha.2007.08.022 > Crossref MedlineGoogle Scholar - 34.Tahzib NG, Nuijts RM, Wu WY, Budo CJ. Long-term study of Artisan phakic intraocular lens implantation for the correction of moderate to high myopia: ten-year follow-up results. Ophthalmology. 2007; 114:1133–1142.
10.1016/j.ophtha.2006.09.029 > Crossref MedlineGoogle Scholar - 35.Reinstein DZ, Yap TE, Carp GI, Archer TJ, Gobbe M. Reproducibility of manifest refraction between surgeons and optometrists in a clinical refractive surgery practice. J Cataract Refract Surg. 2014; 40:450–459.
10.1016/j.jcrs.2013.08.053 > Crossref MedlineGoogle Scholar - 36.Reinstein DZ, Srivannaboon S, Archer TJ, Silverman RH, Sutton H, Coleman DJ. Probability model of the inaccuracy of residual stromal thickness prediction to reduce the risk of ectasia after LASIK part I: quantifying individual risk. J Refract Surg. 2006; 22:851–860. > LinkGoogle Scholar
- 37.Reinstein DZ, Archer TJ, Gobbe M. LASIK flap thickness profile and reproducibility of the standard vs zero compression Hansatome microkeratomes: three-dimensional display with Artemis VHF digital ultrasound. J Refract Surg. 2011; 27:417–426.
10.3928/1081597X-20101110-01 > LinkGoogle Scholar - 38.Reinstein DZ, Archer TJ, Gobbe M, Johnson N. Accuracy and reproducibility of Artemis central flap thickness and visual outcomes of LASIK with the Carl Zeiss Meditec VisuMax femtosecond laser and MEL 80 excimer laser platforms. J Refract Surg. 2010; 26:107–119.
10.3928/1081597X-20100121-06 > LinkGoogle Scholar - 39.Reinstein DZ, Archer TJ, Gobbe M. Corneal ablation depth readout of the MEL80 excimer laser compared to Artemis three-dimensional very high-frequency digital ultrasound stromal measurements. J Refract Surg. 2010; 26:949–959.
10.3928/1081597X-20100114-02 > LinkGoogle Scholar - 40.Reinstein DZ, Carp GI, de Benedictis D, Standardization of LASIK surgical technique evaluated by comparison of procedure time between two experienced surgeons. J Cataract Refract Surg. 2015; 41:1004–1008.
10.1016/j.jcrs.2014.08.039 > Crossref MedlineGoogle Scholar - 41.Reinstein DZ, Archer TJ. Real-time bilateral LASIK procedure. Available at: https://www.youtube.com/watch?v=ncSWnXpgYd0. Accessed December 1, 2014. > Google Scholar
- 42.Reinstein DZ, Gobbe M, Archer TJ. Coaxially sighted corneal light reflex versus entrance pupil center centration of moder ate to high hyperopic corneal ablations in eyes with small and large angle kappa. J Refract Surg. 2013; 29:518–525.
10.3928/1081597X-20130719-08 > LinkGoogle Scholar - 43.Pande M, Hillman JS. Optical zone centration in keratorefractive surgery. Entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center?Ophthalmology. 1993; 100:1230–1237.
10.1016/S0161-6420(93)31500-9 > Crossref MedlineGoogle Scholar - 44.Reinstein DZ, Archer TJ, Gobbe M. Comparison of residual stromal bed thickness measurement among very high-frequency digital ultrasound, intraoperative handheld ultrasound, and optical coherence tomography. J Refract Surg. 2012; 28:42–47.
10.3928/1081597X-20110825-02 > LinkGoogle Scholar - 45.Reinstein DZ, Archer TJ, Randleman JB. JRS standard for reporting astigmatism outcomes of refractive surgery. J Refract Surg. 2014; 30:654–659. Erratum in: J Refract Surg. 2015;31:129.
10.3928/1081597X-20140903-01 > LinkGoogle Scholar - 46.Kanellopoulos AJMD, Asimellis GP. Refractive and keratometric stability in high myopic LASIK with high-frequency femtosecond and excimer lasers. J Refract Surg. 2013; 29:832–837.
10.3928/1081597X-20130924-02 > LinkGoogle Scholar - 47.Stonecipher KG, Kezirian GM, Stonecipher M. LASIK for −6.00 to −12.00 D of myopia with up to 3.00 D of cylinder using the ALLEGRETTO WAVE: 3- and 6-month results with the 200-and 400-Hz platforms. J Refract Surg. 2010; 26:S814–S818.
10.3928/1081597X-20100921-08 > LinkGoogle Scholar - 48.Vega-Estrada A, Alió JL, Arba Mosquera S, Moreno LJ. Corneal higher order aberrations after LASIK for high myopia with a fast repetition rate excimer laser, optimized ablation profile, and femtosecond laser-assisted flap. J Refract Surg. 2012; 28:689–696.
10.3928/1081597X-20120921-03 > LinkGoogle Scholar - 49.Hashemi H, Miraftab M, Asgari S. Comparison of the visual outcomes between PRK-MMC and phakic IOL implantation in high myopic patients. Eye (Lond). 2014; 28:1113–1118.
10.1038/eye.2014.115 > Crossref MedlineGoogle Scholar - 50.Ju Y, Gao X-W, Ren B. Posterior chamber phakic intraocular lens implantation for high myopia. Int J Ophthalmol. 2013; 6:831–835. > MedlineGoogle Scholar
- 51.Said A, Hamade IH, Tabbara KF. Late onset corneal ectasia after LASIK surgery. Saudi J Ophthalmol. 2011; 25:225–230.
10.1016/j.sjopt.2011.05.003 > Crossref MedlineGoogle Scholar - 52.Ambrósio R, Caiado AL, Guerra FP, Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. J Refract Surg. 2011; 27:753–758.
10.3928/1081597X-20110721-01 > LinkGoogle Scholar - 53.Silverman RH, Urs R, Roychoudhury A, Archer TJ, Gobbe M, Reinstein DZ. Epithelial remodeling as basis for machine-based identification of keratoconus. Invest Ophthalmol Vis Sci. 2014; 55:1580–1587.
10.1167/iovs.13-12578 > Crossref MedlineGoogle Scholar - 54.Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003; 135:620–627.
10.1016/S0002-9394(02)02220-1 > Crossref MedlineGoogle Scholar - 55.U.S. Food and Drug Administration. WaveLight ALLEGRETTO WAVE™ Excimer Laser System (PMA). Available at: http://www.accessdata.fda.gov/cdrh_docs/pdf3/P030008b.pdf. Accessed November 7, 2014. > Google Scholar